3 resultados para 189-1172

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eudiaptomus vulgaris Schmeil is the most abundant copepod in Lake Maggiore and forms also, in respect to other entomostraca, the most important element, through its average biomass and because it is fairly numerous throughout the year. Plankton samples collected in a systematic and quantitative way, gave the opportunity to study some aspects of the dynamics of the population of this copepod, in safety in view of the uncertainty which in this kind of study can ensue when samples are taken only at a single station - in consequence of the changes in size of population between different water masses. The results of the biometrical observations are of the population of Eudiaptomus vulgaris is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Taking stock and looking to the future - note from former PICES Chairman The state of the western North Pacific in the first half of 1998 The status of the Bering Sea in the first eight month of 1998 The state of the eastern North Pacific since February 1998 Highlights of PICES VII, review of SB activities and future workplan The second PICES Workshop on the Okhotsk Sea and ajacent area PICES-GLOBEC Climate Change and Carrying Capacity Program: A report from PICES VII Data management for the CCCC Program Report on GOOS Living Marine Resource Panel Meeting Photos from PICES VII Vjatcheslav Petrovich Shuntov GLOBEC Canada: Who we are, what we’ve been doing and where we’re headed The Ocean Carrying Capacity Research Program (OCC) at the Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska JAMSTEC research activities in the northern North Pacific People and events

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of potential sea level rise on the shoreline and shore environment have been briefly examined by considering the interactions between sea level rise and relevant coastal processes. These interactions have been reviewed beginning with a discussion of the need to reanalyze previous estimates of eustatic sea level rise and compaction effects in water level measurement. This is followed by considerations on sea level effects on coastal and estuarine tidal ranges, storm surge and water level response, and interaction with natural and constructed shoreline features. The desirability to reevaluate the well known Bruun Rule for estimating shoreline recession has been noted. The mechanics of ground and surface water intrusion with reference to sea level rise are then reviewed. This is followed by sedimentary processes in the estuaries including wetland response. Finally comments are included on some probable effects of sea level rise on coastal ecosystems. These interactions are complex and lead to shoreline evolution (under a sea level rise) which is highly site-specific. Models which determine shoreline change on the basis of inundation of terrestrial topography without considering relevant coastal processes are likely to lead to erroneous shoreline scenarios, particularly where the shoreline is composed of erodible sedimentary material. With some exceptions, present day knowledge of shoreline response to hydrodynamic forcing is inadequate for long-term quantitative predictions. A series of interrelated basic and applied research issues must be addressed in the coming decades to determine shoreline response to sea level change with an acceptable degree of confidence. (PDF contains 189 pages.)