7 resultados para 1880-1898
em Aquatic Commons
Resumo:
Larval kelp (Sebastes atrovirens), brown (S. auriculatus), and blackand-yellow (S. chrysomelas) rockfish were reared from known adults, to preflexion stage, nine days after birth for S. chrysomelas, to late postflexion stage for S. atrovirens, and to pelagic juvenile stage for S. auriculatus. Larval S. atrovirens and S. chrysomelas were about 4.6 mm body length (BL) and S. auriculatus about 5.2 mm BL at birth. Both S. atrovirens and S. auriculatus underwent notochord flexion at about 6–9 mm BL. Sebastes atrovirens transform to the pelagic juvenile stage at about 14–16 mm BL and S. auriculatus transformed at ca. 25 mm BL. Early larvae of all three species were characterized by melanistic pigment dorsally on the head, on the gut, on most of the ventral margin of the tail, and in a long series on the dorsal margin of the tail. Larval S. atrovirens and S. auriculatus developed a posterior bar on the tail during the flexion or postflexion stage. In S. atrovirens xanthic pigment resembled the melanistic pattern throughout larval development. Larval S. auriculatus lacked xanthophores except on the head until late preflexion stage, when a pattern much like the melanophore pattern gradually developed. Larval S. chrysomelas had extensive xanthic pigmentation dorsally, but none ventrally, in preflexion stage. All members of the Sebastes subgenus Pteropodus (S. atrovirens, S. auriculatus, S. carnatus, S. caurinus, S. chrysomelas, S. dalli, S. maliger, S. nebulosus, S. rastrelliger) are morphologically similar and all share the basic melanistic pigment pattern described here. Although the three species reared in this study can be distinguished on the basis of xanthic pigmentation, it seems unlikely that it will be possible to reliably identify field-collected larvae to species using traditional morphological and melanistic pigmentation characters. (PDF file contains 36 pages.)
Resumo:
ENGLISH: One phase of the duties of the Inter-American Tropical Tuna Commission is the gathering and interpretation of data concerning the life history of the commercially important bait species throughout the Eastern Pacific Ocean. During 1958 the Commission established a laboratory in Manta, Ecuador to study tuna. It was subsequently found that this fishery was dependent upon one species of anchovy, Anchoa naso, which was locally referred to as "colorado." During the calendar year 1959 approximately 380,000 scoops of bait were taken by the Manta tuna fleet (Schaefer, 1960), which at that time numbered about 23 vessels. Since then the fleet has increased by about 25 per cent and it is probable that the bait catch has increased also. Virtually nothing has been reported concerning the life history of this species. Hildebrand (1943) reviewed its taxonomy and reported standard lengths ranging from 32 to 135 mm. Peterson (1956) examined specimens from Central America and found them to range from 27 to 66 mm. He also indicated that the species spawned over a long period of time. The present report describes some aspects of the life history of Anchoa naso in Ecuadorian waters. The findings are based on 121 collections taken during the period March 1959 through June 1961. SPANISH: Una fase de las obligaciones de La Comisión Interamericana del Atún Tropical es la obtensión e interpretación de los datos concernientes a la historia natural de las especies de carnada comercialmente importantes en todo el Océano Pacifico Oriental. En el año de 1958 la Comisión estableció un laboratorio en Manta, Ecuador, para estudiar el atún. Se encontró subsecuentemente que esta pesquería dependía de una especie de anchoa, Anchoa naso, conocida localmente con el nombre de colorado. Durante el año calendario de 1959, la flota atunera de Manta, que en ese tiempo alcanzaba a unos 23 barcos, obtuvo aproximadamente 380,000 copas (scoops) de carnada (Schaefer, 1960). Desde entonces la flota ha aumentado en un 25 por ciento, y es probable que la captura de peces-cebo haya aumentado también. Nada se ha informado virtualmente sobre la historia natural de esta especie. Hildebrand (1943) revisó su taxonomia e informó sobre su longitud estándar, que varia entre los 32 y 135 mm. Peterson (1956) examinó especímenes de la América Central, y encontró que variaban entre los 27 y 66 mm. También indicó que la especie desova durante un largo periodo de tiempo. El presente informe describe algunos aspectos de la historia natural de la Anchoa naso en aguas ecuatorianas. Los hallazgos están basados en 121 recolecciones hechas durante el periodo de marzo de 1959 a junio de 1961. (PDF contains 30 pages.)
Resumo:
Some aspects of the reproduction of Nematopalaemon hastatus in the artisanal shrimp fishery in the outer Cross River estuary (Nigeria) was investigated. 2 kg samples were taken from the daily catch of the N. hastatus fishery on a twice-weekly basis. The N. hastatus in the sample were then observed for gravidity, using a hand lens, and their post-orbital carapace length (POCL) taken. This was done over a 12-month period. The eggs in formalin-fixed samples showed colour changes from light orange to dark brown with maturation. Gravid females with eggs in different stages of maturation, from light orange to dark brown were observed in the samples. The reproduction occurs all year-round. The proportion of gravid females observed in samples had two distinct peaks in June and November, and two distinct troughs in May and October. The lowest length at which gravidity was observed was 6.0 mm POCL. There were no Penaeus notialis in the samples
Resumo:
Skates (family Rajidae) are oviparous and lay tough, thick-walled eggs. At least some skate species lay their eggs in spatially restricted nursery grounds where embryos develop and hatch (Hitz, 1964; Hoff, 2007). After hatching, neonates may quickly leave the nursery grounds (Hoff, 2007). Egg densities in these small areas may be quite high. As an example, in the eastern Bering Sea, a site <2 km2 harbored eggs of Alaska skate (Bathyraja parmifera) exceeding 500,000/km2. All skate nursery grounds have been identified over soft sea floors (Lucifora and García, 2004; Hoff, 2007).
Resumo:
The widespread and commercially important rougheye rockfish, Sebastes aleutianus (Jordan and Evermann, 1898), has been considered a single variable species, with light- and dark-colored forms, found on the outer continental shelf and upper slope of the North Pacific Ocean. Genetic analysis of 124 specimens verified the presence of two species in new specimens collected from Alaska to Oregon, and the two species were analyzed for distinguishing color patterns and morphological characters. Characters distinguishing the two were extended to an analysis of 215 additional formalin-fixed specimens representing their geographic ranges. Sebastes aleutianus is pale, often has dark mottling on the dorsum in diffuse bands, and does not have distinct dark spots on the spinous dorsal fin; it ranges from the eastern Aleutian Islands and southeastern Bering Sea to California. Sebastes melanostictus (Matsubara, 1934), the blackspotted rockfish, ranges from central Japan, through the Aleutian Islands and Bering Sea, to southern California. It is darker overall and spotting is nearly always present on the spinous dorsal fin. Sebastes swifti (Evermann and Goldsborough, 1907) is a synonym of S. aleutianus; S. kawaradae (Matsubara, 1934) is a synonym of S. melanostictus. The subgenus Zalopyr is restricted to S. aleutianus and S. melanostictus. Nomenclatural synonymies, diagnoses, descriptions, and distributions are provided for each species.
Resumo:
Knowledge of the distribution and biology of the ragfish, Icosteus aenigmaticus, an aberrant deepwater perciform of the North Pacific Ocean, has increased slowly since the first description of the species in the 1880’s which was based on specimens retrieved from a fish monger’s table in San Francisco, Calif. As a historically rare, and subjectively unattractive appearing noncommercial species, ichthyologists have only studied ragfish from specimens caught and donated by fishermen or by the general public. Since 1958, I have accumulated catch records of >825 ragfish. Specimens were primarily from commercial fishermen and research personnel trawling for bottom and demersal species on the continental shelves of the eastern North Pacific Ocean, Gulf of Alaska, Bering Sea, and the western Pacific Ocean, as well as from gillnet fisheries for Pacific salmon, Oncorhynchus spp., in the north central Pacific Ocean. Available records came from four separate sources: 1) historical data based primarily on published and unpublished literature (1876–1990), 2) ragfish delivered fresh to Humboldt State University or records available from the California Department of Fish and Game of ragfish caught in northern California and southern Oregon bottom trawl fisheries (1950–99), 3) incidental catches of ragfish observed and recorded by scientific observers of the commercial fisheries of the eastern Pacific Ocean and catches in National Marine Fisheries Service trawl surveys studying these fisheries from 1976 to 1999, and 4) Japanese government research on nearshore fisheries of the northwestern Pacific Ocean (1950–99). Limited data on individual ragfish allowed mainly qualitative analysis, although some quantitative analysis could be made with ragfish data from northern California and southern Oregon. This paper includes a history of taxonomic and common names of the ragfish, types of fishing gear and other techniques recovering ragfish, a chronology of range extensions into the North Pacific and Bering Sea, reproductive biology of ragfish caught by trawl fisheries off northern California and southern Oregon, and topics dealing with early, juvenile, and adult life history, including age and growth, food habits, and ecology. Recommendations for future study are proposed, especially on the life history of juvenile ragfish (5–30 cm FL) which remains enigmatic.
Resumo:
Historical sources of the late-18th and 19th centuries were searched for information on coastal weather conditions in Southern California. Relatively calm winters until 1828 were followed by unusually stormy winters from about 1829 to 1839. Later periods were again predominantly calm, with notable exceptions related to the ENSO events of 1845 and 1878. Following decreases through the stormy 1830s, sizes of kelp forests appear to have rebounded in the 1840s. ENSO occurrences and eruption of the volcano Cosiguina in 1835 are likely causes for changing wind patterns. Our results link the unique AD 1840 Macoma leptonoidea pelecypod shell layer in laminated Santa Barbara Basin sediment ("Macoma event") to abruptly changing oceanographic and weather patterns.