10 resultados para 12S rRNA
em Aquatic Commons
Resumo:
Abstract In the last years scallops have reached a considerable popularity and the import of scallops into the EU has increased about 20 % over the last fi ve years from some 50.000 t to nearly 63.000 t in the year 2010. Scallops are fi shed or farmed, and traded as fresh or deep frozen product. Recently investigation of scallop products of various origins by determining the species using molecular biological techniques showed that the species had been mislabelled in a considerable proportion of samples. Determination of the species was performed by PCR-based DNA-analysis of mitochondrial DNA followed by (i) sequencing the PCR product and (ii) comparison of the DNA sequence with entries in GenBank using BLAST. The deduced sequences of the analysed samples were considerably different from each other allowing the unambiguous assignment of samples to a certain species. Kurzfassung Die Nachfrage von Kammmuscheln in der EU hat in den letzten fünf Jahren erheblich zugenommen. Der Import stieg von knapp 53.000 t im Jahr 2005 um 20% auf annähernd 63.000 t im Jahr 2010. Gehandelt werden Kammmuscheln sowohl als frische als auch als Tiefkühlware aus Wildfängen und Aquakultur. Untersuchungen von Kammmuschel-Proben aus verschiedenen Ursprungsländern und Bestimmung der Spezies auf molekularbiologischer Basis zeigten, dass ein erheblicher Anteil der Proben falsch deklariert war. Die Bestimmung der Spezies erfolgte durch Vervielfältigung eines Abschnitts des 16S rRNA Gens durch Polymerase- Kettenreaktion (PCR), anschließender Sequenzanalyse der PCR-Produkte und Vergleich der DNA Sequenzen untereinander und mit Dateneintragungen in GenBank. Die DNA-Sequenzen der ermittelten Abschnitte der 16S rRNA der Proben unterschieden sich erheblich voneinander und erlaubten eine eindeutige Zuordnung zu jeweils einer Spezies.
Resumo:
Larval and juvenile rockfishes (Sebastes spp.) are difficult to identify using morphological characters. We developed a key based on sizes of restriction endonuclease fragments of the NADH dehydrogenase-3 and -4 (ND3/ND4) and 12S and 16S ribosomal RNA (12S/16S) mitochondrial regions. The key makes use of variation in the ND3/ND4 region. Restriction endonuclease Dde I variation can corroborate identifications, as can 12S/16S variation. The key, based on 71 species, includes most North American taxa, several Asian species, and Sebastolobus alascanus and Helicolenus hilgendorfi that are closely related to rockfishes. Fifty-eight of 71 rockfish species in our database can be distinguished unequivocally, using one to five restriction enzymes; identities of the remaining species are narrowed to small groups: 1) S. polyspinis, S. crameri, and S. ciliatus or variabilis (the two species could not be distinguished and were considered as a single species) ; 2) S. chlorostictus, S. eos, and S. rosenblatti; 3) S. entomelas and S. mystinus; 4)S. emphaeus, S. variegatus, and S. wilsoni; and 5) S. carnatus and S. chrysomelas.
Resumo:
The giant freshwater prawn (Macrobrachium rosenbergii) is cultured widely around the world but little is known about the levels and patterns of genetic diversity in either wild or cultured stocks. Studies have suggested that genetic diversity may be relatively low in some cultured stocks due to the history of how they were founded and subsequent exposure to repeated population bottlenecks in hatcheries. In contrast, wild stocks have an extensive distribution that extends from Southern Asia across Southeast (SE) Asia to the Pacific region. Therefore, wild stocks could be an important resource for genetic improvement of culture stocks in the future. Understanding the extent and patterns of genetic diversity in wild giant freshwater prawn stocks will assist decisions about the direction future breeding programs may take. Wild stock genetic diversity was examined using a 472 base-pair segment of the 16S rRNA gene in 18 wild populations collected from across the natural range of the species. Two major clades ("eastern" and "western") were identifi ed either side of Huxley’s line, with a minimum divergence of 6.2 per cent, which implies separation since the Miocene period (5-10 MYA). While divergence estimates within major clades was small (maximum 0.9 per cent), evidence was also found for population structuring at a lower spatial scale. This will be examined more intensively with a faster evolving mtDNA gene in the future.
Resumo:
Molecular-based approaches for shark species identification have been driven largely by issues specific to the fishery. In an effort to establish a more comprehensive identification data set, we investigated DNA sequence variation of a 1.4-kb region from the mitochondrial genome covering partial sequences from the 12S rDNA, 16S rDNA, and the complete valine tRNA from 35 shark species from the Atlantic fishery. Generally, within-species variability was low in relation to interspecific divergence because species haloptypes formed monophyletic groups. Phylogenetic analyses resolved ordinal relationships among Carcharhiniformes and Lamniformes, and revealed support for the families Sphyrnidae and Triakidae (within Carcharhiniformes) and Lamnidae and Alopidae (within Lamniformes). The combination of limited intraspecific variability and sufficient between-species divergence indicates that this locus is suitable for species identification.
Resumo:
Contemporary in-depth sequencing of environmental samples has provided novel insights into microbial community structures, revealing that their diversity had been previously underestimated. Communities in marine environments are commonly composed of a few dominant taxa and a high number of taxonomically diverse, low-abundance organisms. However, studying the roles and genomic information of these “rare” organisms remains challenging, because little is known about their ecological niches and the environmental conditions to which they respond. Given the current threat to coral reef ecosystems, we investigated the potential of corals to provide highly specialized habitats for bacterial taxa including those that are rarely detected or absent in surrounding reef waters. The analysis of more than 350,000 small subunit ribosomal RNA (16S rRNA) sequence tags and almost 2,000 nearly full-length 16S rRNA gene sequences revealed that rare seawater biosphere members are highly abundant or even dominant in diverse Caribbean corals. Closely related corals (in the same genus/family) harbored similar bacterial communities. At higher taxonomic levels, however, the similarities of these communities did not correlate with the phylogenetic relationships among corals, opening novel questions about the evolutionary stability of coral-microbial associations. Large proportions of OTUs (28.7–49.1%) were unique to the coral species of origin. Analysis of the most dominant ribotypes suggests that many uncovered bacterial taxa exist in coral habitats and await future exploration. Our results indicate that coral species, and by extension other animal hosts, act as specialized habitats of otherwise rare microbes in marine ecosystems. Here, deep sequencing provided insights into coral microbiota at an unparalleled resolution and revealed that corals harbor many bacterial taxa previously not known. Given that two of the coral species investigated are listed as threatened under the U.S. Endangered Species Act, our results add an important microbial diversity-based perspective to the significance of conserving coral reefs.
Resumo:
Colonies of the scleractinian coral Acropora palmata, listed as threatened under the US Endangered Species Act in 2006, have been monitored in Hawksnest Bay, within Virgin Islands National Park, St. John, from 2004 through 2010 by scientists with the US Geological Survey, National Park Service, and the University of the Virgin Islands. The focus has been on documenting the prevalence of disease, including white band, white pox (also called patchy necrosis and white patches), and unidentified diseases (Rogers et al., 2008; Muller et al., 2008). In an effort to learn more about the pathologies that might be involved with the diseases that were observed, samples were collected from apparently healthy and diseased colonies in July 2009 for analysis. Two different microbial assays were performed on Epicentre Biotechnologies DNA swabs containing A. palmata coral mucus, and on water and sediment samples collected in Hawksnest Bay. Both assays are based on polymerase chain reaction (PCR) amplification of portions of the small rRNA gene (16S). The objectives were to determine 1) if known coral bacterial pathogens Serratia marcescens (Acroporid Serratiosis), Vibrio coralliilyticus (temperature-dependent bleaching, White Syndrome), Vibrio shiloi (bleaching, necrosis), and Aurantimonas coralicida (White Plague Type II) were present in any samples, and 2) if there were any differences in microbial community profiles of each healthy, unaffected or diseased coral mucus swab. In addition to coral mucus, water and sediment samples were included to show ambient microbial populations. In the first test, PCR was used to separately amplify the unique and diagnostic region of the 16S rRNA gene for each of the coral pathogens being screened. Each pathogen test was designed so that an amplified DNA fragment could be seen only if the specific pathogen was present in a sample. A positive result was indicated by bands of DNA of the appropriate size on an agarose gel, which separates DNA fragments based on the size of the molecule. DNA from pure cultures of each of the pathogens was used as a positive control for each assay.
Resumo:
Intergeneric hybridization between the epinepheline serranids Cephalopholis fulva and Paranthias furcifer in waters off Bermuda was investigated by using morphological and molecular characters. Putative hybrids, as well as members of each presumed parent species, were analyzed for 44 morphological characters and screened for genetic variation at 16 nuclear allozyme loci, two nuclear (n)DNA loci, and three mitochondrial (mt)DNA gene regions. Four of 16 allozyme loci, creatine kinase (CK-B*), fumarase (FH*), isocitrate dehydrogenase (ICDH-S*), and lactate dehydrogenase (LDH-B*), were unique in C. fulva and P. furcifer. Restriction fragments of two nuclear DNA intron regions, an actin gene intron and the second intron in the S7 ribosomal protein gene, also exhibited consistent differences between the two presumed parent species. Restriction fragments of three mtDNA regions—ND4, ATPase 6, and 12S/16S ribosomal RNA—were analyzed to identify maternal parentage of putative hybrids. Both morphological data and nuclear genetic data were found to be consistent with the hypothesis that the putative hybrids were the result of interbreeding between C. fulva and P. furcifer. Mean values of 38 morphological characters were different between presumed parent species, and putative hybrids were intermediate to presumed parent species for 33 of these characters. A principal component analysis of the morphological and meristic data was also consistent with hybridization between C. fulva and P. furcifer. Thirteen of 15 putative hybrids were heterozygous at all diagnostic nuclear loci, consistent with F1 hybrids. Two putative hybrids were identified as post-F1 hybrids based on homozygosity at one nuclear locus each. Mitochondrial DNA analysis showed that the maternal parent of all putative hybrid individuals was C. fulva. A survey of nuclear and mitochondrial loci of 57 C. fulva and 37 P. furcifer from Bermuda revealed no evidence of introgression between the parent species mediated by hybridization.
Resumo:
Partial sequences of cytochrome b (Cyt b) and 16S ribosomal RNA (16S rRNA) mitochondrial genes were used for species identification and estimating phylogenetic relationship among three commercially important Ompok species viz. O. Pabda, O. pabo and O. bimaculatus. The sequence analysis of Cyt b (1118bp) and 16S rRNA (569 & 570bp) genes revealed that O. pabda, O. pabo & 0. bimaculatus were genetically distinct species and they exhibited identical phylogenetic relationship. The present study discussed usefulness of mtDNA genes (Cyt b & 16S rRNA) in resolving taxonomic ambiguity and estimating phylogenetics relationship.
Resumo:
Artemia is a small crustacean that adapted to live in brine water and has been seen in different brine water sources in Iran. Considering the importance of genetic studies manifest inter population differences in species, to estimate genetic structure, detect difference at molecular level and separate different Artemia populations of Iran, also study of phylogenic relationships among them, samples of Artemia were collected from nine region: Urmia lake in West Azerbaijan, Shoor and Inche-Borun lakes in Golestan, Hoze-Soltan and Namak lakes in Qom, Maharloo and Bakhteghan lakes in Fars, Nough pool in Kerman and Mighan pool in Markazi and DNA extracted by phenol-chloroform method. Primers designed on a ribosomal fragment (16s rRNA) of mt DNA sequence and PCR was done. Digestion of the 1566 bp segment PCR product by 10 restriction endonuclease (Alu I, EcoR I, Eco47 I, Hae III, Hind III, Hinf I, Mbo I, Msp I, Rsa I, TaqI) showed 25 different haplotypes: 9 in Urmia, 4 in Shoor and Inche- Borun, 1 in Namak and Hoze-Soltan, 3 in Mighan, 1 in Bakhtegan Maharlo, 3 in Maharloo and 4 in Nough. Measurement of haplotype and nucleotide diversity intra population and nucleotide diversity and divergence inter populations and evolutionary distance between haplotypes showed a high diversity in mitochondrial genome of Artemia in studied regions whose results are similar to those explained for highly geographic expansion organism. In addition, results showed considerable heterogeneity between different populations and there are enough evidences in haplotypic level for separation of studied samples and division of Iranian Artemia to seven populations including Urmia, Shoor and Inche-Borun, Hoze-Soltan and Namak, Maharloo, Bakhteghan, Nough and Mighan. Phylogenetic analysis of the 16S rRNA data set resulted strict consensus and neighbor joining distance trees, demonstrated that all samples were monophyletic and parthenogenetic form derivation from bisexual populations and genetically high resemblance to those of A. urmiana. Study of 270 specimens from different region showed the genus Artemia in Iran clustered into three clades including: 1- Shoor, Inche-Burun, Hoze-Soltan, Namak, Bakhtegan and Maharloo 2- Nough and Mighan 3- Urmia. Totally, obtained results indicated to ability of used techniques for study of inter species diversity, population structure, reveal of phylogenic relationship and dividing of different populations of Artemia in Iran.
Resumo:
This research was conducted to identify Cuttlefish population (Sepia pharaonis) in The Persian Gulf and the Oman Sea using PCR-RFLP. Specimens were collected from )0 different stations. Bottom trawling method was used for sampling from different zones of the Persian Gulf and the Oman Sea, and finally specimens from S. Pharaonis were collected at each station . DNA was extracted by phenol—Coloroform method. One pair primer was designed based on 1As rRNA gene nucleotide sequences. The results obtained from 1 As rRNA gene RFLP, which was reproduced by PCR technique, were analyzed and utilized for study of diversity of the Cuttlefish population. PCR product with o pair base in length achieved for all specimens, which was subjected to enzymatic digestion by A restriction action enzymes: Alu I-Taq I-Mnl I-Rsa I-Hind III-Dra I-vu II and Hae II DNA bands patterns in all specimens digested by those enzymen showed similarity with no any polymorphism. From this result, it can be concluded that there is not any possibility to isolate different populations in the studied Cuttlefish species under exploitation of rRNA gene.