6 resultados para 12930-040
em Aquatic Commons
Resumo:
This Freely Associated States Shallow-water Coral Ecosystem Mapping Implementation Plan (FAS MIP) presents a framework for the development of shallow-water (~0–40 m; 0–22 fm) benthic habitat and possibly bathymetric maps of critical areas of the Freely Associated States (FAS). The FAS is made up of three self-governing groups of islands and atolls—the Republic of Palau (Palau), the Federated States of Micronesia (FSM), and the Republic of the Marshall Islands (RMI)—that are affiliated with the United States through Compacts of Free Association. This MIP was developed with extensive input from colleges, national and state regulatory and management agencies, federal agencies, non-governmental organizations, and individuals involved in or supporting the conservation and management of the FAS’s coral ecosystems. A list of organizations and individuals that provided input to the development of this MIP is provided in Appendix 1. This MIP has been developed to complement the Coral Reef Mapping Implementation Plan (2nd Draft) released in 1999 by the U.S. Coral Reef Task Force’s Mapping and Information Synthesis Working Group. That plan focused on mapping United States and FAS shallow-water (then defined as <30 m) coral reefs by 2009, based on available funding and geographic priorities, using primarily visual interpretation of aerial photography and satellite imagery. This MIP focuses on mapping the shallow-water (now defined as 0–40 m, rather than 0–30 m) coral ecosystems of the FAS using a suite of technologies and map development procedures. Both this FAS MIP and the 1999 Coral Reef Mapping Implementation Plan (2nd Draft) support to goals of the National Action Plan to Conserve Coral Reefs (U.S. Coral Reef Task Force, 2000). This FAS MIP presents a framework for mapping the coral ecosystems of the FAS and should be considered an evolving document. As priorities change, funding opportunities arise, new data are collected, and new technologies become available, the information presented herein will change.
Resumo:
As nearshore fish populations decline, many commercial fishermen have shifted fishing effort to deeper continental slope habitats to target fishes for which biological information is limited. One such fishery that developed in the northeastern Pacific Ocean in the early 1980s was for the blackgill rockfish (Sebastes melanostomus), a deep-dwelling (300−800 m) species that congregates over rocky pinnacles, mainly from southern California to southern Oregon. Growth zone-derived age estimates from otolith thin sections were compared to ages obtained from the radioactive disequilibria of 210Pb, in relation to its parent, 226Ra, in otolith cores of blackgill rockfish. Age estimates were validated up to 41 years, and a strong pattern of agreement supported a longevity exceeding 90 years. Age and length data fitted to the von Bertalanffy growth function indicated that blackgill rockfish are slow-growing (k= 0.040 females, 0.068 males) and that females grow slower than males, but reach a greater length. Age at 50% maturity, derived from previously published length-at-maturity estimates, was 17 years for males and 21 years for females. The results of this study agree with general life history traits already recognized for many Sebastes species, such as long life, slow growth, and late age at maturation. These traits may undermine the sustainability of blackgill rockfish populations when heavy fishing pressure, such as that which occurred in the 1980s, is applied.
Resumo:
Age and growth of the swordfish (Xiphias gladius) in Taiwan waters was studied from counts of growth bands on cross sections of the second ray of the first anal fin. Data on lower jaw fork length and weight, and samples of the anal fin of male and female swordfish were collected from three offshore and coastal tuna longline fishing ports on a monthly basis between September 1997 and March 1999. In total, 685 anal fins were collected and 627 of them (293 males and 334 females) were aged successfully. The lower jaw fork lengths of the aged individuals ranged from 83.4 to 246.6 cm for the females and from 83.3 to 206 cm for the males. The radii of the fin rays and growth bands on the cross sections were measured under a dissecting microscope equipped with an image analysis system. Trends in the monthly marginal increment ratio indicated that growth bands formed once a year. Thus, the age of each fish was deter-mined from the number of visible growth bands. Two methods were used to estimate and compare the standard and the generalized von Bertalanffy growth parameters for both males and females. The nonlinear least square estimates of the generalized von Bertalanffy growth parameters in method II, in which a power function was used to describe the relationship between ray radius and LJFL, were recommended as most acceptable. There were significant differences in growth parameters between males and females. The growth parameters estimated for females were the following: asymptotic length (L∞) = 300.66 cm, growth coefficient (K) = 0.040/yr, age at zero length (t0) = –0.75 yr, and the fitted fourth parameter (m) = –0.785. The growth parameters estimated for males were the following: asymptotic length (L∞) = 213.05 cm, growth coefficient (K) = 0.086/yr, age at zero length (t0) = –0.626 yr, and the fitted fourth parameter (m) = –0.768.
Resumo:
Physicochemical parameters of 31 fish pond water samples of Tripura were studied to ascertain the nutrient profile of acidic soil zone and the impact of water acidity towards aquaculture productivity. The pH was acidic (mean 6.63±0.44) with high Fe (mean1.04±0.40 mglˉ¹) and AI (mean 2.67±2.41 mglˉ¹) contents. These were mostly responsible for pond water acidity and poor productivity with low nitrogen, phosphate and total alkalinity. The study also showed strong negative relationship between water pH and redox potential (R²=0.5251). However, pH was positively significant with electrical conductivity. The roles of redox potential and electrical conductivity in water acidity were found highly important. Available calcium content was also found low (mean 2.91±2.96 mglˉ¹). Elevating level of pH of pond water could be the possible management practices in acidic water so that such unproductive water might be productive enough with higher phosphate and nitrogen levels for better biological production.
Resumo:
Aquaculture systems are an integral element of rural development and therefore should be environment friendly as well as socially and economically designed. From the economic standpoint, one of the major constraints for the development of sustainable aquaculture includes externalities generated by competition in access to a limited resource. This study was conducted as an investigation into the water requirement for the hatchery and nursery production phases of common carp, Cyprinus carpio (Linnaeus, 1758) at the Maharashtra State Fish Seed Farm at Khopoli in Raigad Dist. of Maharashtra during the winter months from November to February. The water budgeting study involves the quantification of water used in every stage of production in hatchery and nursery systems and aimed at becoming a foundation for the minimization of water during production without affecting the yield; thereby conserving water and upholding the theme of sustainable aquaculture. The total water used in a single operation cycle was estimated to be 11,25,040 L [sic]. Out of the total water consumed, 4.74% water was used in the pre-operational management steps, 4.48% was consumed during breeding, 62.72% was consumed in the hatching phase, 21.50% was used for hatchery rearing and 6.56% was consumed during conditioning. In the nursery ponds, the water gain was primarily the regulated inflow coming through the irrigation channel. The total quantum of water used in the nursery rearing was 31,60,800 L [sic]. The initial filling and regulated inflow formed 42.60% and 57.40% respectively of water gain, while evaporation, seepage and discharge contributed 20.71%, 36.46% and 42.82% respectively to the water loss. The total water expended for the entire operation was 1,21,61,120 L [sic]. Water expense occurred to produce a single spawn in the hatchery system was calculated and found to be 0.56 L while the water expended to produce one fry was calculated as 4.86 L. The study fulfills the hydrological equation described by Winter (1981) and Boyd (1985). It also validates the water budget simulation model that can be used for forecasting water requirements for aquaculture ponds (Nath and Bolte, 1998).