12 resultados para 12-P-0708-1

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommendations for changes to service provision and fisheries policy in support of poverty alleviation emerged recently in India from a process know as facilitated advocacy (see Case Study SI 2) that helped to negotiate and support a role for poor people and their service providers, to contribute to changes in services and policies. Two of the key recommendations to emerge from farmers and fishers, which were prioritized by Fisheries Departments, were to change the way that information is made available and to simplify procedures for accessing government schemes and bank loans. This case which identifies the origin of these recommendations to change the way that information is made available, shows how different models of the concept have emerged, and follows the development of the One-stop Aqua Shops (OAS) in the eastern Indian states of Jharkhand, Orissa and West Bengal, that represent a new and vital tier in communications in aquaculture. (12 p.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Executive Summary: The western National Coastal Assessment (NCA-West) program of EPA, in conjunction with the NOAA National Ocean Service (NOS), conducted an assessment of the status of ecological condition of soft sediment habitats and overlying waters along the western U.S. continental shelf, between the target depths of 30 and 120 m, during June 2003. NCA-West and NOAA/NOS partnered with the West Coast states (Washington (WA), Oregon (OR), and California (CA)), and the Southern California Coastal Water Research Project (SCCWRP) Bight ’03 program to conduct the survey. A total of 257 stations were sampled from Cape Flattery, WA to the Mexican border using standard methods and indicators applied in previous coastal NCA projects. A key study feature was the incorporation of a stratified-random sampling design with stations stratified by state and National Marine Sanctuary (NMS) status. Each of the three states was represented by at least 50 random stations. There also were a total of 84 random stations located within NOAA’s five NMSs along the West Coast including the Olympic Coast NMS (OCNMS), Cordell Bank NMS (CBNMS), Gulf of Farallones NMS (GFNMS), Monterey Bay NMS (MBNMS), and Channel Islands NMS (CINMS). Collection of flatfish via hook-and-line for fish-tissue contaminant analysis was successful at 50 EMAP/NCA-West stations. Through a collaboration developed with the FRAM Division of the Northwest Fisheries Science Center, fish from an additional 63 stations in the same region and depth range were also analyzed for fish-tissue contaminants. Bottom depth throughout the region ranged from 28 m to 125 m for most stations. Two slightly deeper stations from the Southern California Bight (SCB) (131, 134 m) were included in the data set. About 44% of the survey area had sediments composed of sands (< 20% silt-clay), about 47% was composed of intermediate muddy sands (20-80% silt-clay), and about 9% was composed of muds (> 80% silt-clay). The majority of the survey area (97%) had relatively low percent total organic carbon (TOC) levels of < 2%, while a small portion (< 1%) had high TOC levels (> 5%), in a range potentially harmful to benthic fauna. Salinity of surface waters for 92% of the survey area were > 31 psu, with most stations < 31 psu associated with the Columbia River plume. Bottom salinities ranged only between 31.6 and 34.4 psu. There was virtually no difference in mean bottom salinities among states or between NMS and non-NMS stations. Temperatures of surface water (range 8.5 -19.9 °C) and bottom water (range 5.8 -14.7 °C) averaged several degrees higher in CA in comparison to WA and OR. The Δσt index of watercolumn stratification indicated that about 31% of the survey area had strong vertical stratification of the water column. The index was greatest for waters off WA and lowest for CA waters. Only about 2.6 % of the survey area had surface dissolved oxygen (DO) concentrations ≤ 4.8 mg/L, and there were no values below the lower threshold (2.3 mg/L) considered harmful to the survival and growth of marine animals. Surface DO concentrations were higher in WA and OR waters than in CA, and higher in the OC NMS than in the CA sanctuaries. An estimated 94.3% of the area had bottom-water DO concentrations ≤ 4.8 mg/L and 6.6% had concentrations ≤ 2.3 mg/L. The high prevalence of DO from 2.3 to 4.8 mg/L (85% of survey area) is believed to be associated with the upwelling of naturally low DO water across the West Coast shelf. Mean TSS and transmissivity in surface waters (excluding OR due to sample problems) were slightly higher and lower, respectively, for stations in WA than for those in CA. There was little difference in mean TSS or transmissivity between NMS and non-NMS locations. Mean transmissivity in bottom waters, though higher in comparison to surface waters, showed little difference among geographic regions or between NMS and non-NMS locations. Concentrations of nitrate + nitrite, ammonium, total dissolved inorganic nitrogen (DIN) and orthophosphate (P) in surface waters tended to be highest in CA compared to WA and OR, and higher in the CA NMS stations compared to CA non-sanctuary stations. Measurements of silicate in surface waters were limited to WA and CA (exclusive of the SCB) and showed that concentrations were similar between the two states and approximately twice as high in CA sanctuaries compared to OCNMS or nonsanctuary locations in either state. The elevated nutrient concentrations observed at CA NMS stations are consistent with the presence of strong upwelling at these sites at the time of sampling. Approximately 93% of the area had DIN/P values ≤ 16, indicative of nitrogen limitation. Mean DIN/P ratios were similar among the three states, although the mean for the OCNMS was less than half that of the CA sanctuaries or nonsanctuary locations. Concentrations of chlorophyll a in surface waters ranged from 0 to 28 μg L-1, with 50% of the area having values < 3.9 μg L-1 and 10% having values > 14.5 μg L-1. The mean concentration of chlorophyll a for CA was less than half that of WA and OR locations, and concentrations were lowest in non-sanctuary sites in CA and highest at the OCNMS. Shelf sediments throughout the survey area were relatively uncontaminated with the exception of a group of stations within the SCB. Overall, about 99% of the total survey area was rated in good condition (<5 chemicals measured above corresponding effect range low (ERL) concentrations). Only the pesticides 4,4′-DDE and total DDT exceeded corresponding effect range-median (ERM) values, all at stations in CA near Los Angeles. Ten other contaminants including seven metals (As, Cd, Cr, Cu, Hg, Ag, Zn), 2-methylnaphthalene, low molecular weight PAHs, and total PCBs exceeded corresponding ERLs. The most prevalent in terms of area were chromium (31%), arsenic (8%), 2-methylnaphthalene (6%), cadmium (5%), and mercury (4%). The chromium contamination may be related to natural background sources common to the region. The 2-methylnaphthalene exceedances were conspicuously grouped around the CINMS. The mercury exceedances were all at non-sanctuary sites in CA, particularly in the Los Angeles area. Concentrations of cadmium in fish tissues exceeded the lower end of EPA’s non-cancer, human-health-risk range at nine of 50 EMAP/NCA-West and nine of 60 FRAM groundfish-survey stations, including a total of seven NMS stations in CA and two in the OCNMS. The human-health guidelines for all other contaminants were only exceeded for total PCBs at one station located in WA near the mouth of the Columbia River. Benthic species richness was relatively high in these offshore assemblages, ranging from 19 to 190 taxa per 0.1-m2 grab and averaging 79 taxa/grab. The high species richness was reflected over large areas of the shelf and was nearly three times greater than levels observed in estuarine samples along the West Coast (e.g NCA-West estuarine mean of 26 taxa/grab). Mean species richness was highest off CA (94 taxa/grab) and lower in OR and WA (55 and 56 taxa/grab, respectively). Mean species richness was very similar between sanctuary vs. non-sanctuary stations for both the CA and OR/WA regions. Mean diversity index H′ was highest in CA (5.36) and lowest in WA (4.27). There were no major differences in mean H′ between sanctuary vs. nonsanctuary stations for both the CA and OR/WA regions. A total of 1,482 taxa (1,108 to species) and 99,135 individuals were identified region-wide. Polychaetes, crustaceans and molluscs were the dominant taxa, both by percent abundance (59%, 17%, 12% respectively) and percent species (44%, 25%, 17%, respectively). There were no major differences in the percent composition of benthic communities among states or between NMSs and corresponding non-sanctuary sites. Densities averaged 3,788 m-2, about 30% of the average density for West Coast estuaries. Mean density of benthic fauna in the present offshore survey, averaged by state, was highest in CA (4,351 m-2) and lowest in OR (2,310 m-2). Mean densities were slightly higher at NMS stations vs. non-sanctuary stations for both the CA and OR/WA regions. The 10 most abundant taxa were the polychaetes Mediomastus spp., Magelona longicornis, Spiophanes berkeleyorum, Spiophanes bombyx, Spiophanes duplex, and Prionospio jubata; the bivalve Axinopsida serricata, the ophiuroid Amphiodia urtica, the decapod Pinnixa occidentalis, and the ostracod Euphilomedes carcharodonta. Mediomastus spp. and A. serricata were the two most abundant taxa overall. Although many of these taxa have broad geographic distributions throughout the region, the same species were not ranked among the 10 most abundant taxa consistently across states. The closest similarities among states were between OR and WA. At least half of the 10 most abundant taxa in NMSs were also dominant in corresponding nonsanctuary waters. Many of the abundant benthic species have wide latitudinal distributions along the West Coast shelf, with some species ranging from southern CA into the Gulf of Alaska or even the Aleutians. Of the 39 taxa on the list of 50 most abundant taxa that could be identified to species level, 85% have been reported at least once from estuaries of CA, OR, or WA exclusive of Puget Sound. Such broad latitudinal and estuarine distributions are suggestive of wide habitat tolerances. Thirteen (1.2%) of the 1,108 identified species are nonindigenous, with another 121 species classified as cryptogenic (of uncertain origin), and 208 species unclassified with respect to potential invasiveness. Despite uncertainties of classification, the number and densities of nonindigenous species appear to be much lower on the shelf than in the estuarine ecosystems of the Pacific Coast. Spionid polychaetes and the ampharetid polychaete Anobothrus gracilis were a major component of the nonindigenous species collected on the shelf. NOAA’s five NMSs along the West Coast of the U.S. appeared to be in good ecological condition, based on the measured indicators, with no evidence of major anthropogenic impacts or unusual environmental qualities compared to nearby nonsanctuary waters. Benthic communities in sanctuaries resembled those in corresponding non-sanctuary waters, with similarly high levels of species richness and diversity and low incidence of nonindigenous species. Most oceanographic features were also similar between sanctuary and non-sanctuary locations. Exceptions (e.g., higher concentrations of some nutrients in sanctuaries along the CA coast) appeared to be attributable to natural upwelling events in the area at the time of sampling. In addition, sediments within the sanctuaries were relatively uncontaminated, with none of the samples having any measured chemical in excess of ERM values. The ERL value for chromium was exceeded in sediments at the OCNMS, but at a much lower percentage of stations (four of 30) compared to WA and OR non-sanctuary areas (31 of 70 stations). ERL values were exceeded for arsenic, cadmium, chromium, 2- methylnaphthalene, low molecular weight PAHs, total DDT, and 4,4′-DDE at multiple sites within the CINMS. However, cases where total DDT, 4,4′-DDE, and chromium exceeded the ERL values were notably less prevalent at CINMS than in non-sanctuary waters of CA. In contrast, 2-methylnaphthalene above the ERL was much more prevalent in sediments at the CINMS compared to non-sanctuary waters off the coast of CA. While there are natural background sources of PAHs from oil seeps throughout the SCB, this does not explain the higher incidence of 2-methylnaphthalene contamination around CINMS. Two stations in CINMS also had levels of TOC (> 5%) potentially harmful to benthic fauna, though none of these sites exhibited symptoms of impaired benthic condition. This study showed no major evidence of extensive biological impacts linked to measured stressors. There were only two stations, both in CA, where low numbers of benthic species, diversity, or total faunal abundance co-occurred with high sediment contamination or low DO in bottom water. Such general lack of concordance suggests that these offshore waters are currently in good condition, with the lower-end values of the various biological attributes representing parts of a normal reference range controlled by natural factors. Results of multiple linear regression, performed using full model procedures to test for effects of combined abiotic environmental factors, suggested that latitude and depth had significant influences on benthic variables regionwide. Latitude had a significant inverse influence on all three of the above benthic variables, i.e. with values increasing as latitude decreased (p< 0.01), while depth had a significant direct influence on diversity (p < 0.001) and inverse effect on density (p <0.01). None of these variables varied significantly in relation to sediment % fines (at p< 0.1), although in general there was a tendency for muddier sediments (higher % fines) to have lower species richness and diversity and higher densities than coarser sediments. Alternatively, it is possible that for some of these sites the lower values of benthic variables reflect symptoms of disturbance induced by other unmeasured stressors. The indicators in this study included measures of stressors (e.g., chemical contaminants, eutrophication) that are often associated with adverse biological impacts in shallower estuarine and inland ecosystems. However, there may be other sources of humaninduced stress in these offshore systems (e.g., bottom trawling) that pose greater risks to ambient living resources and which have not been captured. Future monitoring efforts in these offshore areas should include indicators of such alternative sources of disturbance. (137pp.) (PDF contains 167 pages)

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphometric studies were made on Lingula larvae collected from three different stations off Karwar and Coondapur. The data pertaining to length, breadth and the pairs of cirri were subjected to statistical analysis. The relationship between length and breadth shows allometric growth. The rate of increase in length in relation to breadth is not statistically significant up to the 10 P.C. stage. Increase in length is faster up to 12 P.C. stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zoea 2(Z SUB-2 ) Mysis 1 (M SUB-1 ) and Postlarva 1 (P SUB-1 ) of P. monodon artificially spawned in closed-system concrete hatchery tanks were bioassayed for their tolerance to the antibiotic furanace. The setup consisted of four 20-liter capacity plastic basins previously conditioned for 15 days with freshwater in full sunlight. During the experiment, each basin was filled with 5 liters of seawater to which was added filtered Chaetoceros and Brachionus to give densities of 5 . 0-7 . 5 x 10 SUP-4 cells/ml and 10-20 individuals/ml, respectively. The following are the properties of the water used throughout the experiments: salinity, 26-32%; pH, 7 . 3-8 . 4; temperature, 25-30 degree C; dissolved oxygen, 4 . 5-8 . 4 ppm; nitrite, 0 . 36-0 . 99 ppm; and ammonia, 0 . 10-0 . 30 ppm. To each basin were added 50 healthy larvae of specific stages of P. monodon. After an initial acclimation of one hour in the medium, preweighed amounts of the antibiotic were added and thoroughly dissolved. The concentrations tested were 1 . 0, 2 . 0 and 3 . 0 ppm. One basin always served as control. After 24 hours of exposure, the surviving population in each basin was counted. The survivors were then examined thoroughly under the microscope for unusual behavior and morphological defects brought about by the exposure. To minimize wide variations in the medium as a result of feeding and other manipulations, the systems were all prepared at 9:00 a.m. each time, and the feeds on two instances, one at 5:00 p.m. and another at 5:00 a.m. Fifteen trials conducted with Z SUB-2 showed survival ranges of 68% to 98% with a mean of 77 . 6% in the controls; 32% to 94% with a mean of 65 . 7% at 1 ppm, and 0% to 56% with a mean of 36 . 5% at 2 ppm. There were no survivors at 3 ppm. Interpolation from the survival-dose curve gave a 24-hr LC SUB-50 of approximately 1 . 6 ppm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the levels and distributions of nutrient salts in the United Arab Emirates waters. Water samples were collected bimonthly during 1994-1995 from the marine environment of the United Arab Emirates, which extends more than 800km along the Arabian Gulf and the Gulf of Oman. Concentrations of ammonium, nitrite, nitrate, phosphate, silicate, as well as total concentrations of total dissolved nitrogen, phosphorus, and silicon in the area were scattered in the ranges: (ND-6.32; mean: 0.84 µg-at N/l), ND-3.02; mean: 0.42 µg-at N/l), (ND-10.88; mean: 1.18 µg-at N/1), (ND-4.22; mean: 0.62 µg-at P/l), (1.14-28.80; mean: 6.52 µg-at Si/l), (1.52-39.58; mean: 12.28 µg-at N/l), (0.40-4.98; mean: 1.07 µg-at P/l), and (2.77-44.74; mean: 13.02 Si/l) respectively. Of inorganic nitrogen species, ammonium was the highest in the Arabian Gulf waters and nitrate was the highest at the Gulf of Oman. The dissolved inorganic nitrogen total species, phosphate and silicate amounted to 16.4, 47.6, 56.5% respectively, of the concentrations of nitrogen, phosphorus and silicon in the Arabian Gulf and 22.6, 64.4, 44.9% respectively, in the Gulf of Oman, indicating that more than 80% of nitrogen was present in organic forms. Distributions of nutrient in the two regions were higher in the summer season and lower in the winter season due to the oxidation of organic materials. Regional distributions revealed higher values for nitrite (1.3 times), nitrate (2.8 times), phosphate (2.2 times), total dissolved nitrogen (1.3 times), total dissolved phosphorus (1.6 times), and total dissolved silicon (1.3 times) in the Gulf of Oman compared to the Arabian Gulf, indicating more oligotrophic conditions at the Arabian Gulf Whereas no distinct patterns of distribution were observed in the Arabian Gulf waters, an increase in the seaward direction was measured at the Gulf of Oman. Vertical distributions indicated a general increase with depth in the two regions. The mean ratios for total concentrations of phosphorus, nitrogen, and silicon in the Arabian Gulf (1: 11.6: 12.6) and the Gulf of Oman (1: 10.1: 11.8) were lower than the Redfield ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sefid-Rood River Estuary (SRE) is the most important riverine ecosystem in the south Caspian Sea along the Iranian coast lines. The aim of this study was to examine spatial and temporal variability in Phytoplankton and Zooplankton abundance and diversity in SRE. Variability of Chlorophyll a and inorganic nutrient concentration were determined during a year (November 2004– October 2005) in five sampling stations. Primary and secondry production were determined during a year. Total chlorophyll a concentration during the investigation ranged between zero to 22.8 μgl-1 and the highest levels were consistently recorded during summer and the lowest during winter with a annual mean concentration 4.48 μgl-1. Nutrient concentration was seasonally related to river flow with annual mean concentration: NO2 0.05±0.2 mgl-1, NO3 1.13±0.57 mgl-1, NH4 0.51±0.66 mgl-1, total phosphate 0.13±0.1mgl-1 and SiO2 5.68±1.91 mgl-1. Bacillariophytes, Cyanophytes, Chlorophytes, Pyrophytes and Euglenophytes were the dominant phytoplankton groups in this shallow and turbid estuary. The diversity and abundance of phytoplankton had a seasonal pattern while Diatomas and Chrysophytes were dominant throughout the year but Cyanophytes observed only during the summer. Zooplankton community structure was dominated by copepods which 68% of the total zooplankton. In the winter and summer seasons two increased in the number of zooplankton community and usually toward the sea had occurred. Zooplankton also showed a significant spatial and temporal variation. The high turbidity and temperature prime characteristics of SRE seem to be determining factors acting directly on phytoplankton and zooplankton temporal variability and nutrient fluctuations. Everywhere in this estuary nutrients appeared to be in excess of algal requirement and did not influence a phytoplankton and zooplankton composition. Also there was a positive correlation between chlorophyll a and temperature and a negative one with DIN and TP. Primary production determined in this estuary by dark and light butter method and G.P.P. 38.27±34.12 mgcm-2h-1 and N,PP 201.6±289.9 mgcm-2d-1. secondry production determined 15/128 mgc/m3/year. Everywhere in this estuary nutrients appeared to be in excess to algal requirement and did not influence in Chl. a and primary production. The most important factor influence on Chl. a was water temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first studies on the problems related to the reproduction of marine fish in Argentina (SW Atlantic ocean) have been carried out with a species of great economic importance, the anchovy (Engraulis anchoita Hubbs and Marini). The spawning period of this species during the period 1963-64 has been determined. By the application of the quantitative collection method, it has been established that spawning commenced in the areas close to the coast during the first few days of September and at a water temperature of 10,3° C and reached its greatest intensity in October (up 1569 eggs/1 square metre surface water) at a temperature varying between 11,5-13,8° C. From the middle of November the anchovy continues to reproduce in a less intensive form and further out to Sea, up to at least the month of May. The intensity of reproduction reaches a peek in February, and at a water temperature of 20° C. It is believed that two physiologically distinct populations of Engraulis anchoita may exist, the first reproducing in Spring and the second in Autumn. It has been established that a daily spawning rhythm occurs, between the hours of 8 and 12 p. m. During this period it was possible to obtain mature females with which artificial fertilization was performed. The rate of development was determined, which at a temperature of 14-15° C is from 69-72 hours, and at a temperature of 19-20° C from 50-53 hours. A temperature of 49° C was found be lethal. The different embryonic and larval stages of development are illustrated diagramatically and individually described. The preliminary studies on the larvae and juveniles caught in the Sea during the period of reproduction led to the formulation of certain conclusions whith reference that the juveniles, as yet larvae, begin to group together at an early age, and the younger individuals the more uniform are the schoals whith regards to the total size of the specimens. It has shown that the anchovy during its first year of life tends to display littoral behaviour. RESUMEN EN ESPAÑOL: Los primeros estudios de los problemas referentes a la reproducción de los peces marinos en la Argentina (océano Atlántico sudoccidental) se han efectuado sobre una especie de gran importancia económica, Engraulis anchoita Hubbs y Marini. Se ha determinado la época de desove de la anchoíta en un período anual 1963-64. Aplicando el método de recolección cuantitativo se ha establecido que el desove de esta especie ha empezado en las zonas muy cercanas a la costa, en los primeros días de setiembre a la temperatura 10,3° C y ha alcanzado mayor intensidad en octubre (hasta 1569 huevos en 1 m2 de la superficie del agua) a la temperatura 11,5°-13,8° C. Desde mediados de noviembre la anchoíta sigue reproduciéndose en forma poco intensiva y más mar afuera, hasta por lo menos el mes de mayo. La intensidad de reproducción para este segundo período alcanza un pico, aunque muy pequeño en febrero a la temperatura 20° C. Se hace la suposición de que pueden existir dos de distintas características fisiológicas poblaciones de Engraulis anchoita una de reproducción primaveral y otra de reproducción otoñal. Además se ha establecido que existe un ritmo diario de desove que comprende las horas 20-24. En las horas de postura se pudo conseguir hembras maduras y con sus productos sexuales se efectuó la fecundación artificial. Se determinó la velocidad de desarrollo que a la temperatura 14°-15° C es de 69-72 horas y en la temperatura 19°- 20° C es de 50-53 horas. La temperatura 4° resultó ser letal. Se realizaron dibujos y descripciones correspondientes a los distintos estadios embrionarios y larvales. Los estudios preliminares de las larvas y juveniles de la anchoíta, capturados en el mar en la época de reproducción, permitieron sacar ciertas conclusiones sobre el crecimiento en sus primeros meses de vida. Se observó que los juveniles, larvas todavía, empiezan a agruparse muy temprano y cuanto más jóvenes son los individuos, tanto más uniformes son los cardúmenes en las dimensiones de los ejemplares. Se demostró que la anchoíta en su primer año de vida tiene costumbres muy costeras.