11 resultados para 1081
em Aquatic Commons
Resumo:
We developed a habitat suitability index (HSI) model to understand and identify the optimal habitat and potential fishing grounds for neon f lying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Remote sensing data, including sea surface temperature, sea surface salinity, sea surface height, and chlorophyll-a concentrations, as well as fishery data from Chinese mainland squid f leets in the main fishing ground (150–165°E longitude) from August to October, from 1999 to 2004, were used. The HSI model was validated by using fishery data from 2005. The arithmetic mean modeling with three of the environmental variables—sea surface temperature, sea surface height anomaly, and chlorophyll- a concentrations—was defined as the most parsimonious HSI model. In 2005, monthly HSI values >0.6 coincided with productive fishing grounds and high fishing effort from August to October. This result implies that the model can reliably predict potential f ishing grounds for O. bartramii. Because spatially explicit fisheries and environmental data are becoming readily available, it is feasible to develop a dynamic, near real-time habitat model for improving the process of identifying potential fishing areas for and optimal habitats of neon flying squid.
Resumo:
Paired-tow calibration studies provide information on changes in survey catchability that may occur because of some necessary change in protocols (e.g., change in vessel or vessel gear) in a fish stock survey. This information is important to ensure the continuity of annual time-series of survey indices of stock size that provide the basis for fish stock assessments. There are several statistical models used to analyze the paired-catch data from calibration studies. Our main contributions are results from simulation experiments designed to measure the accuracy of statistical inferences derived from some of these models. Our results show that a model commonly used to analyze calibration data can provide unreliable statistical results when there is between-tow spatial variation in the stock densities at each paired-tow site. However, a generalized linear mixed-effects model gave very reliable results over a wide range of spatial variations in densities and we recommend it for the analysis of paired-tow survey calibration data. This conclusion also applies if there is between-tow variation in catchability.
Resumo:
Surveys with a remotely operated vehicle (ROV) at four mudhabitat sites with different histories of ocean shrimp (Pandalus jordani) trawling showed measurable effects of trawling on macroinvertebrate abundance and diversity. Densities of the sea whip (Halipteris spp., P<0.01), the flat mud star (Luidia foliolata, P< 0.001), unidentified Asteroidea (P<0.05), and squat lobsters (unidentified Galathoidea, P<0.001) were lower at heavily trawled (HT) sites, as was invertebrate diversity based on the Shannon-Wiener index. Sea cucumbers (unidentified Holothuroidea) and unidentified corals (Hydrocoralia) were observed at lightly trawled (LT) sites but not at HT sites. Hagfish (Eptatretus spp.) burrows were the dominant structural feature of the sediment surface at all sites and were more abundant at the HT sites (P<0.05), a result potentially related to effects from fishery discards. Substantial heterogeneity was found between the northern and southern site pairs, indicating high site-to-site variability in macroinvertebrate densities in these deep (146–156 m) mud habitats. Two of the study sites were closed to trawling in June 2006. The data from this study can be used in combination with future surveys to measure recovery rates of deep, mud, seaf loor habitats from the effects of trawling, thus providing a critical piece of information for ecosystem-based management.
Resumo:
Over 230 metric tons of octopus is harvested as bycatch annually in Alaskan trawl, long-line, and pot fisheries. An expanding market has fostered interest in the development of a directed fishery for North Pacific giant octopus (Enteroctopus dofleini). To investigate the potential for fishery development we examined the efficacy of four different pot types for capture of this species. During two surveys in Kachemak Bay, Alaska, strings of 16 –20 sablefish, Korean hair crab, shrimp, and Kodiak wooden lair pots were set at depths ranging between 62 and 390 meters. Catch per-unit-of-ef for t estimates were highest for sablefish and lair pots. Sablefish pots caught significantly heavier North Pacific giant octopuses but also produced the highest bycatch of commercially important species, such as halibut (Hippoglossus stenolepis), Pacific cod (Gadus macrocephalus), and Tanner crab (Chionoecetes bairdi).
Resumo:
Larval and early juvenile stages of Symphurus oligomerus are described from 24 specimens from the Gulf of California. Meristic features were 48 – 49 total vertebrae, 87–94 dorsal-fin rays, 73–77 anal-fin rays, 12 caudal-fin rays, and five hypural bones. Seven larvae and one juvenile were cleared and stained to obtain the pterygiophore formula (1-3-2-2-2) that confirmed the identification of S. oligomerus. The pigment pattern from preflexion to juvenile stage consists of three bands on the dorsal margin and two bands on the ventral margin formed by star-shaped melanophores on the left side of the body. The intestine in preflexion to postflexion larvae forms an abdominal projection that ends in a short conical appendix. The intestine is supported by three cartilaginous struts; larvae with these physical attributes are called exterilium larvae. Preflexion larvae have two elongated dorsal-fin rays, and in flexion to postflexion larvae the second to the fourth dorsalfin rays are elongate. We found an apparent connection between the size at metamorphosis of the species of Symphurus and the depth distribution range of adults such that the fish species that metamorphose at a larger size have a deeper distribution as adults and exterilium larvae seem to correspond to species that have deeper distributions.
Resumo:
Diet, gastric evacuation rates, daily ration, and population-level prey demand of bluefin tuna (Thunnus thynnus) were estimated in the continental shelf waters off North Carolina. Bluefin tuna stomachs were collected from commercial fishermen during the late fall and winter months of 2003–04, 2004–05, and 2005–06. Diel patterns in mean gut fullness values were used to estimate gastric evacuation rates. Daily ration determined from mean gut fullness values and gastric evacuation rates was used, along with bluefin tuna population size and residency times, to estimate population-level consumption by bluefin tuna on Atlantic menhaden (Brevoortia tyrannus). Bluefin tuna diet (n= 448) was dominated by Atlantic menhaden; other teleosts, portunid crabs, and squid were of mostly minor importance. The time required to empty the stomach after peak gut fullness was estimated to be ~20 hours. Daily ration estimates were approximately 2% of body weight per day. At current western Atlantic population levels, bluefin tuna predation on Atlantic menhaden is minimal compared to predation by other known predators and the numbers taken in commercial harvest. Bluefin tuna appear to occupy coastal waters in North Carolina during winter to prey upon Atlantic menhaden. Thus, changes in the Atlantic menhaden stock status or distribution would alter the winter foraging locations of bluefin
Resumo:
The dusky rockfish (Sebastes variabilis) has recently been resurrected as a distinct species in the genus Sebastes. Reproductive biology and growth were examined for this redescribed species in the central Gulf of Alaska. Age and length at 50% maturity were 9.2 years and 365 mm fork length, respectively, which are lower than previously reported. Fertilized ova and eyed embryos were observed in April and evidence of postparturition was not observed until May. The gonadosomatic index decreased with the onset of postparturition in May. Von Bertalanffy growth parameters for female dusky rockfish, estimated from the maturity samples, were significantly different from growth parameters derived from Gulf of Alaska fishery-independent survey data.
Resumo:
A description of the foraging habitat of a cetacean species is critical for conservation and effective management. We used a fine-scale microhabitat approach to examine patterns in bottlenose dolphin (Tursiops truncatus) foraging distribution in relation to dissolved oxygen, turbidity, salinity, water depth, water temperature, and distance from shore measurements in a highly turbid estuary on the northern Gulf of Mexico. In general, environmental variation in the Barataria Basin marine environment comprises three primary axes of variability (i.e., factors: temperature and dissolved oxygen, salinity and turbidity, and distance and depth) that represent seasonal, spatial-seasonal, and spatial scales, respectively. Foraging sites were differentiated from nonforaging sites by significant differences among group size, temperature, turbidity, and season. Habitat selection analysis on individual variables indicated that foraging was more frequently observed in waters 4–6 m deep, 200–500 m from shore, and at salinity values of around 20 psu. This fine-scale and multivariate approach represents a useful method of exploring the complexity, gradation, and detail of the relationships between environmental variables and the foraging distribution patterns of bottlenose dolphin.
Resumo:
Atlantic menhaden (Brevoortia tyrannus), through landings, support one of the largest commercial fisheries in the United States. Recent consolidation of the once coast-wide reduction fishery to waters within and around Chesapeake Bay has raised concerns over the possibility of the loss of unique genetic variation resulting from concentrated fishing pressure. To address this question, we surveyed variation at the mitochondrial cytochrome c oxidase subunit I (COI) gene region and seven nuclear microsatellite loci to evaluate stock structure of Atlantic menhaden. Samples were collected from up to three cohorts of Atlantic menhaden at four geographic locations along the U.S. Atlantic coast in 2006 and 2007, and from the closely related Gulf menhaden (B. patronus) in the Gulf of Mexico. Genetic divergence between Atlantic menhaden and Gulf menhaden, based on the COI gene region sequences and microsatellite loci, was more characteristic of conspecific populations than separate species. Hierarchical analyses of molecular variance indicated a homogeneous distribution of genetic variation within Atlantic menhaden. No significant variation was found between young-of-the-year menhaden (YOY) collected early and late in the season within Chesapeake Bay, between young-of-the-year and yearling menhaden collected in the Chesapeake Bay during the same year, between YOY and yearling menhaden taken in Chesapeake Bay in successive years, or among combined YOY and yearling Atlantic menhaden collected in both years from the four geographic locations. The genetic connectivity between the regional collections indicates that the concentration of fishing pressure in and around Chesapeake Bay will not result in a significant loss of unique genetic variation.
Resumo:
Measurements of 18O/16O and 13C/12C ratios in the carbonate of juvenile gray snapper (Lutjanus griseus) sagittal otoliths collected during 2001–2005 from different southern Florida regions indicated significant variations in the ratios between Florida Bay and surrounding areas. Annual differences in isotopic composition were also observed. Classification accuracy of individual otoliths to a region averaged 80% (63% to 96%), thereby enabling the probability of assigning an unknown individual to the appropriate juvenile nursery habitat. Identification of isotopic signatures in the otoliths of gray snapper from Florida Bay and adjacent ecosystems may be important for distinguishing specific portions of the bay that are crucial nursery grounds for juveniles. Separation of gray snapper between geographic regions and nursery sites is possible and has the potential to establish a link between adult gray snapper present on offshore reefs and larvae and juveniles at nursery habitats in Florida Bay or adjacent areas.
Resumo:
Using data collected simultaneously from a trawl and a hydrophone, we found that temporal and spatial trends in densities of juvenile Atlantic croaker (Micropogonias undulatus) in the Neuse River estuary in North Carolina can be identified by monitoring their sound production. Multivariate analysis of covariance (MA NCOVA) revealed that catch per unit of effort (CPUE) of Atlantic croaker had a significant relationship with the dependent variables of sound level and peak frequency of Atlantic croaker calls. Tests of between-subject correspondence failed to detect relationships between CPUE and either of the call parameters, but statistical power was low. Williamson’s index of spatial overlap indicated that call detection rate (expressed by a 0–3 calling index) was correlated in time and space with Atlantic croaker CPUE. The correspondence between acoustic parameters and trawl catch rates varied by month and by habitat. In general, the calling index had a higher degree of overlap with this species’ density than did the received sound level of their calls. Classification and regression tree analysis identified calling index as the strongest correlate of CPUE. Passive acoustics has the potential to be an inexpensive means of identifying spatial and temporal trends in abundance for soniferous fish species.