12 resultados para 1074
em Aquatic Commons
Resumo:
We used 25 years of conventional tagging data (n= 6173 recoveries) and 3 years of ultrasonic telemetry data (n=105 transmitters deployed) to examine movement rates and directional preferences of four age classes of red drum (Sciaenops ocellatus) in estuarine and coastal waters of North Carolina. Movement rates of conventionally tagged red drum were dependent on the age, region, and season of tagging. Age-1 and age-2 red drum tagged along the coast generally moved along the coast, whereas fish tagged in oligohaline waters far from the coast were primarily recovered in coastal regions in fall months. Adult (age-4+) red drum moved from overwintering grounds on the continental shelf through inlets into Pamlico Sound in spring and summer months and departed in fall. Few tagged red drum were recovered in adjacent states (0.6% of all recoveries); however, some adult red drum migrated seasonally from overwintering grounds in coastal North Carolina northward to Virginia in spring, returning in fall. Age-2 transmitter-tracked red drum displayed seasonal emigration from a small tributary, but upstream and downstream movements within the tributary were correlated with fluctuating salinity regimes and not season. Large-scale conventional tagging and ultrasonic telemetry programs can provide valuable insights into the complex movement patterns of estuarine fish.
Resumo:
The reproductive biology of blue marlin (Makaira nigricans) was assessed from 1001 fish (ranging from 121 to 275 cm in eye-to-fork length; EFL) caught by Taiwanese offshore longliners in the western Pacific Ocean from September 2000 to December 2001 and from 843 gonad samples from these fish, The overall sex ratio of the catch was approximately 1:1 dur ing the sampling period, but blue marlin are sexually dimorphic; females are larger than males. Reproductive activity (assessed by histology), a gonadosomatic index, and the distribution of oocyte diameters, indicated that spawning occurred predominantly from May to September. The estimated sizes-at-maturity (EFL50) were 179.76 ±1.01 cm (mean ±standard error) for females and 130 ±1 cm EFL for males. Blue marlin are multiple spawners and oocytes develop asynchronously. The proportion of mature females with ovaries containing postovulatory follicles (0.41) and hydrated oocytes (0.34) indicated that the blue marlin spawned once every 2–3 days on average. Batch fecundity (BF) for 26 females with the most advanced oocytes (≥1000 μm), but without postovulatory follicles, ranged from 2.11 to 13.50 million eggs (6.94 ± 0.54 million eggs). The relationships between batch fecundity (BF, in millions of eggs) and EFL and round weight (RW, kg) were BF = 3.29 × 10 –12 EFL5.31 (r2 = 0.70) and BF = 1.59 × 10–3 RW 1.73 (r2= 0.67), respectively. The parameters estimated in this study are key information for stock assessments of blue marlin in the western Pacific Ocean and will contribute to the conservation and sustainable yield of
Resumo:
We investigated estuarine spatial and temporal overlap of wild and marked hatchery chum salmon (Oncorhynchus keta) fry; the latter included two distinct size groups released near the Taku River estuary (Taku Inlet) in Southeast Alaska (early May releases of ~ 1.9 g and late May releases of ~ 3.9 g wet weight). Our objectives were to compare abundance, body size, and condition of wild chum salmon fry and hatchery chum salmon fry raised under early and late rearing strategies in different habitats of Taku Inlet and to document environmental factors that could potentially explain the distribution, size, and abundance of these chum salmon fr y. We used a sampling design stratified into inner and outer inlet and neritic and littoral habitats. Hatchery fry were rare in the inner estuary in both years but outnumbered wild fry 20:1 in the outer estuary. Hatchery fry were significantly larger than wild fry in both littoral and neritic samples. Abundances of wild and hatchery fry were positively correlated in the outer inlet, indicating the formation of mixed schools of hatchery and wild fry. Spatial and temporal overlap was greatest between wild and early hatchery fry in the outer inlet in both habitats. The early hatchery release coincided with peak abundances of wild fry in the outer inlet, and the distribution of wild and early hatchery fry overlapped for about three weeks. Our results demonstrate that the timing of release of hatchery fry may affect interactions with wild fry.
Resumo:
Millions of crabs are sorted and discarded in freezing conditions each year in Alaskan fisheries for Tanner crab (Chionoecetes bairdi) and snow crab (C. opilio). However, cold exposures vary widely over the fishing season and among different vessels, and mortalities are difficult to estimate. A shipboard experiment was conducted to determine whether simple behavioral observations can be used to evaluate crab condition after low-temperature exposures. Crabs were systematically subjected to cold in seven different exposure treatments. They were then tested for righting behavior and six different ref lex actions and held to monitor mortality. Crabs lost limbs, showed ref lex impairment, and died in direct proportion to increases in cold exposure. Righting behavior was a poor predictor of mortality, whereas reflex impairment (scored as the sum of reflex actions that were lost) was an excellent predictor. This composite index could be measured quickly and easily in hand, and logistic regression revealed that the relationship between reflex impairment and mortality correctly predicted 80.0% of the mortality and survival for C. bairdi, and 79.4% for C. opilio. These relationships provide substantial improvements over earlier approaches to mortality estimation and were independent of crab size and exposure temperature.
Resumo:
The introduced grouper species peacock hind (Cephalopholis argus), was the dominant large-body piscivore on the Main Hawaiian Island (MHI) reefs assessed by underwater visual surveys in this study. However, published data on C. argus feeding ecology are scarce, and the role of this species in Hawaiian reef ecosystems is presently not well understood. Here we provide the first comprehensive assessment of the diet composition, prey electivity (dietary importance of prey taxa compared to their availability on reefs), and size selectivity (prey sizes in the diet compared to sizes on reefs) of this important predator in the MHI. Diet consisted 97.7% of fishes and was characterized by a wide taxonomic breadth. Surprisingly, feeding was not opportunistic, as indicated by a strongly divergent electivity for different prey fishes. In addition, whereas some families of large-body species were represented in the diet exclusively by recruit-size individuals (e.g., Aulostomidae), several families of smaller-body species were also represented by juveniles or adults (e.g., Chaetodontidae). Both the strength and mechanisms of the effects of C. argus predation are therefore likely to differ among prey families. This study provides the basis for a quantitative estimate of prey consumption by C. argus, which would further increase understanding of impacts of this species on native fishes in Hawaii.
Resumo:
In this study, phase angle (the ratio of resistance and reactance of tissue to applied electrical current) is presented as a possible new method to measure fish condition. Condition indices for fish have historically been based on simple weight-at-length relationships, or on costly and timeconsuming laboratory procedures that measure specific physiological parameters. Phase angle is introduced to combine the simplicity of a quick field-based measurement with the specificity of laboratory analysis by directly measuring extra- and intracellular water distribution within an organism, which is indicative of its condition. Phase angle, which can be measured in the field or laboratory in the time it takes to measure length and weight, was measured in six species of fish at different states (e.g., fed vs. fasted, and postmortem) and under different environmental treatments (wild vs. hatchery, winter vs. spring). Phase angle reflected different states of condition. Phase angles <15° indicated fish in poor condition, and phase angles >15° indicated fish that were in better condition. Phase angle was slightly affected by temperatures (slope = – 0.19) in the 0–8°C range and did not change in fish placed on ice for <12 hours. Phase angle also decreased over time in postmortem fish because of cell membrane degradation and subsequent water movement from intra- to extracellular (interstitial) spaces. Phase angle also reflected condition of specific anatomical locations within the fish.
Resumo:
We examined whether the relationship between climate and salmon production was linked through the effect of climate on the growth of sockeye salmon (Oncorhynchus nerka) at sea. Smolt length and juvenile, immature, and maturing growth rates were estimated from increments on scales of adult sockeye salmon that returned to the Karluk River and Lake system on Kodiak Island, Alaska, over 77 years, 1924–2000. Survival was higher during the warm climate regimes and lower during the cool regime. Growth was not correlated with survival, as estimated from the residuals of the Ricker stock-recruitment model. Juvenile growth was correlated with an atmospheric forcing index and immature growth was correlated with the amount of coastal precipitation, but the magnitude of winter and spring coastal downwelling in the Gulf of Alaska and the Pacific Northwest atmospheric patterns that influence the directional bifurcation of the Pacific Current were not related to the growth of Karluk sockeye salmon. However, indices of sea surface temperature, coastal precipitation, and atmospheric circulation in the eastern North Pacific were correlated with the survival of Karluk sockeye salmon. Winter and spring precipitation and atmospheric circulation are possible processes linking survival to climate variation in Karluk sockeye salmon.
Resumo:
Determining patterns of population connectivity is critical to the evaluation of marine reserves as recruitment sources for harvested populations. Mutton snapper (Lutjanus analis) is a good test case because the last known major spawning aggregation in U.S. waters was granted no-take status in the Tortugas South Ecological Reserve (TSER) in 2001. To evaluate the TSER population as a recruitment source, we genotyped mutton snapper from the Dry Tortugas, southeast Florida, and from three locations across the Caribbean at eight microsatellite loci. Both Fstatistics and individual-based Bayesian analyses indicated that genetic substructure was absent across the five populations. Genetic homogeneity of mutton snapper populations is consistent with its pelagic larval duration of 27 to 37 days and adult behavior of annual migrations to large spawning aggregations. Statistical power of future genetic assessments of mutton snapper population connectivity may benefit from more comprehensive geographic sampling, and perhaps from the development of less polymorphic DNA microsatellite loci. Research where alternative methods are used, such as the transgenerational marking of embryonic otoliths with barium stable isotopes, is also needed on this and other species with diverse life history characteristics to further evaluate the TSER as a recruitment source and to define corridors of population connectivity across the Caribbean and Florida.
Resumo:
Stomach samples from three rockfish species, yellowtail (Sebastes f lavidus), widow (S. entomelas), and canary (S. pinniger) rockfish, seasonally collected off the Pacific Northwest in 1998 and 1999, provided quantitative information on the food habits of these species during and after the 1997–98 El Niño event. Although euphausiids were the most common major prey of all three predators, gelatinous zooplankton and fishes were the most commonly consumed prey items during some seasonal quarters. The influence of the El Niño event was evident in the diets. Anomalous prey items, including the southern euphausiid species Nyctiphanes simplex and juveniles of Pacific whiting (Merluccius productus) frequently appeared in the diets in the spring and summer of 1998. The results of stomach contents analyses, based on 905 stomach samples from 49 trawl hauls during seven commercial fishing trips and from 56 stations during research surveys, were consistent with the timing of occurrence and the magnitude of change in biomass of some zooplankton species reported from zooplankton studies in the northern California Current during the 1997–98 El Niño. Our findings indicate that the observed variations of prey groups in some rockfish diets may be a function of prey variability related to climate and environment changes.
Resumo:
Catch rates for the 13 most abundant species caught in the deep-set Hawaii-based longline fishery over the past decade (1996–2006) provide evidence of a change among the top North Pacific subtropical predators. Catch rates for apex predators such as blue shark (Prionace glauca), bigeye (Thunnus obesus) and albacore (Thunnus alalunga) tunas, shortbill spearfish (Tetrapturus angustirostris), and striped marlin (Tetrapturus audax) declined by 3% to 9% per year and catch rates for four midtrophic species, mahimahi (Coryphaena hippurus), sickle pomfret (Taractichthys steindachneri), escolar (Lepidocybium flavobrunneum), and snake mackerel (Gempylus serpens), increased by 6% to 18% per year. The mean trophic level of the catch for these 13 species declined 5%, from 3.85 to 3.66. A shift in the ecosystem to an increase in midtrophic-level, fast-growing and short-lived species is indicated by the decline in apex predators in the catch (from 70% to 40%) and the increase in species with production to biomass values of 1.0 or larger in the catch (from 20% to 40%). This altered ecosystem may exhibit more temporal variation in response to climate variability.
Resumo:
Marine protected areas (MPAs) are important tools for management of marine ecosystems. While desired, ecological and biological criteria are not always feasible to consider when establishing protected areas. In 2001, the Virgin Islands Coral Reef National Monument (VICR) in St. John, US Virgin Islands was established by Executive Order. VICR boundaries were based on administrative determination of Territorial Sea boundaries and land ownership at the time of the Territorial Submerged Lands Act of 1974. VICR prohibits almost all fishing and other extractive uses. Surveys of habitat and fishes inside and outside of VICR were conducted in 2002-07. Based on these surveys, areas outside VICR had significantly more hard corals; greater habitat complexity; and greater richness, abundance and biomass of reef fishes than areas within VICR, further supporting results from 2002-2004 (Monaco et al., 2007). The administrative (political) process used to establish VICR did not allow a robust ecological characterization of the area to determine the boundaries of the MPA. Efforts are underway to increase amounts of complex reef habitat within VICR by swapping a part of VICR that has little coral reef habitat for a Territorially-owned area within VICR that contains a coral reef with higher coral cover.