20 resultados para 070301 Agro-ecosystem Function and Prediction
em Aquatic Commons
Resumo:
The article highlights a workshop held in Key West, Florida in November 1993 attended by a group of 35 international scientists where topics of ecosystem function and biodiversity on coral reefs were discussed.
Resumo:
Table of Contents [pdf, 0.09 Mb] Section I - Presentations and Discussions at Plenary Sessions Introduction and Overview of Workshop Objectives [pdf, 0.07 Mb] Plenary Session Presentations [pdf, 2.23 Mb] Reports of the Breakout Group Discussions [pdf, 0.43 Mb] Closing Plenary Discussion and Recommendations [pdf, 0.11 Mb] Section II - Extended Abstracts of Individual Presentations at Breakout Group Sessions Breakout Group 1: Physical/Chemical Oceanography and Climate [pdf, 6.14 Mb] Breakout Group 2: Phytoplankton, Zooplankton, Micronekton and Benthos [pdf, 28.14 Mb] Breakout Group 3: Fish, Squid, Crabs and Shrimps [pdf, 4.30 Mb] Breakout Group 4: Highly Migratory Fishes, Seabirds and Marine Mammals [pdf, 6.27 Mb] Appendix 1. Workshop agenda [pdf, 0.15 Mb] Appendix 2. List of participants [pdf, 0.13 Mb] (Document pdf contains 216 pages)
Resumo:
River structure and functioning are governed naturally by geography and climate but are vulnerable to natural and human-related disturbances, ranging from channel engineering to pollution and biological invasions. Biological communities in river ecosystems are able to respond to disturbances faster than those in most other aquatic systems. However, some extremely strong or lasting disturbances constrain the responses of river organisms and jeopardise their extraordinary resilience. Among these, the artificial alteration of river drainage structure and the intense use of water resources by humans may irreversibly influence these systems. The increased canalisation and damming of river courses interferes with sediment transport, alters biogeochemical cycles and leads to a decrease in biodiversity, both at local and global scales. Furthermore, water abstraction can especially affect the functioning of arid and semi-arid rivers. In particular, interception and assimilation of inorganic nutrients can be detrimental under hydrologically abnormal conditions. Among other effects, abstraction and increased nutrient loading might cause a shift from heterotrophy to autotrophy, through direct effects on primary producers and indirect effects through food webs, even in low-light river systems. The simultaneous desires to conserve and to provide ecosystem services present several challenges, both in research and management.
Resumo:
This article describes the progress of the River Communities Project which commenced in 1977. This project aimed to develop a sensitive and practical system for river site classification using macroinvertebrates as an objective means of appraising the status of British rivers. The relationship between physical and chemical features of sites and their biological communities were examined. Sampling was undertaken on 41 British rivers. Ordination techniques were used to analyze data and the sites were classified into 16 groups using multiple discrimination analysis. The potential for using the environmental data to predict to which group a site belonged and the fauna likely to be present was investigated.
Resumo:
This cruise report is a summary of a field survey conducted along a portion of the U.S. continental shelf in northwestern Gulf of Mexico (GOM), at navigable depths along the coastline seaward to the shelf break (~100m) from about 89°30' W to 95°28' W longitude, August 8 – 16, 2011 on NOAA Ship Nancy Foster Cruise NF-11-07-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 34 stations throughout these waters using a random probabilistic sampling design. The original study design consisted of 50 stations extending from the Mississippi delta all the way to the U.S./Mexican border, but vessel failures precluded sampling at 16 stations within the western-most portion of the study area. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. Other indicators, from a human-dimension perspective, were also recorded, including presence of vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing, some preliminary results and observations are reported here. A final report will be completed once all data have been processed.
Resumo:
Marine protected areas (MPAs) represent a form of spatial management, and geospatial information on living marine resources and associated habitat is extremely important to support best management practices in a spatially discrete MPA. Benthic habitat maps provide georeferenced information on the geomorphic structure and biological cover types in the marine environment. This information supports an enhanced understanding of ecosystem function and species habitat utilization patterns. Benthic habitat maps are most useful for marine management and spatial planning purposes when they are created at a scale that is relevant to management actions. We sought to improve the resolution of existing benthic habitat maps created during a regional mapping effort in Hawai`i. Our results complemented these existing regional maps and provided more detailed, finer-scale habitat maps for a network of MPAs in West Hawai`i. The map products created during this study allow local planners and managers to extract information at a spatial scale relevant to the discrete management units, and appropriate for local marine management efforts on the Kona Coast. The resultant benthic habitat maps were integrated in a geographic information system (GIS) that also included aerial imagery, underwater video, MPA regulations, summarized ecological data and other relevant and spatially explicit information. The integration of the benthic habitat maps with additional “value added” geospatial information into a dynamic GIS provide a decision support tool with pertinent marine resource information available in one central location and support the application of a spatial approach to the management of marine resources. Further, this work can serve as a case study to demonstrate the integration of remote sensing products and GIS tools at a fine spatial scale relevant to local-level marine spatial planning and management efforts.
Resumo:
This cruise report is a summary of a field survey conducted along the continental shelf of the northeastern Gulf of Mexico (GOM), encompassing 70,062 square kilometers of productive marine habitats located between the Mississippi Delta and Tampa Bay, August 13–21, 2010 on NOAA Ship Nancy Foster Cruise NF-10-09-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 50 stations throughout these waters using a random probabilistic sampling design. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, TPHs, PAHs, PCBs, PBDEs) in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, turbidity, pH, CDOM fluorescence, sediment grain size, and organic carbon content. Discrete water samples were collected just below the sea surface, in addition to any deeper subsurface depths where there was an occurrence of suspicious CDOM fluorescence signals, and analyzed for total BTEX/TPH and carcinogenic PAHs using immunoassay test kits. Other indicators of potential value from a human-dimension perspective were also recorded, including presence of any vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. In addition to the original project goals, both the scientific scope and general location of this project are relevant to addressing potential ecological impacts of the Deepwater Horizon oil spill. While sample analysis is still ongoing, a few preliminary results and observations are reported here. A final report will be completed once all data have been processed.
Resumo:
Sea- level variations have a significant impact on coastal areas. Prediction of sea level variations expected from the pre most critical information needs associated with the sea environment. For this, various methods exist. In this study, on the northern coast of the Persian Gulf have been studied relation to the effectiveness of parameters such as pressure, temperature and wind speed on sea leve and associated with global parameters such as the North Atlantic Oscillation index and NAO index and present statistic models for prediction of sea level. In the next step by using artificial neural network predict sea level for first in this region. Then compared results of the models. Prediction using statistical models estimated in terms correlation coefficient R = 0.84 and root mean square error (RMS) 21.9 cm for the Bushehr station, and R = 0.85 and root mean square error (RMS) 48.4 cm for Rajai station, While neural network used to have 4 layers and each middle layer six neurons is best for prediction and produces the results reliably in terms of correlation coefficient with R = 0.90126 and the root mean square error (RMS) 13.7 cm for the Bushehr station, and R = 0.93916 and the root mean square error (RMS) 22.6 cm for Rajai station. Therefore, the proposed methodology could be successfully used in the study area.
Resumo:
Lionfish (Pterois volitans/miles complex) are venomous coral reef fishes from the Indian and western Pacific oceans that are now found in the western Atlantic Ocean. Adult lionfish have been observed from Miami, Florida to Cape Hatteras, North Carolina, and juvenile lionfish have been observed off North Carolina, New York, and Bermuda. The large number of adults observed and the occurrence of juveniles indicate that lionfish are established and reproducing along the southeast United States coast. Introductions of marine species occur in many ways. Ballast water discharge, a very common method of introduction for marine invertebrates, is responsible for many freshwater fish introductions. In contrast, most marine fish introductions result from intentional stocking for fishery purposes. Lionfish, however, likely were introduced via unintentional or intentional aquarium releases, and the introduction of lionfish into United States waters should lead to an assessment of the threat posed by the aquarium trade as a vector for fish introductions. Currently, no management actions are being taken to limit the effect of lionfish on the southeast United States continental shelf ecosystem. Further, only limited funds have been made available for research. Nevertheless, the extent of the introduction has been documented and a forecast of the maximum potential spread of lionfish is being developed. Under a scenario of no management actions and limited research, three predictions are made: ● With no action, the lionfish population will continue to grow along the southeast United States shelf. ● Effects on the marine ecosystem of the southeast United States will become more noticeable as the lionfish population grows. ● There will be incidents of lionfish envenomations of divers and/or fishers along the east coast of the United States. Removing lionfish from the southeast United States continental shelf ecosystem would be expensive and likely impossible. A bounty could be established that would encourage the removal of fish and provide specimens for research. However, the bounty would need to be lower than the price of fish in the aquarium trade (~$25-$50 each) to ensure that captured specimens were from the wild. Such a low bounty may not provide enough incentive for capturing lionfish in the wild. Further, such action would only increase the interaction between the public and lionfish, increasing the risk of lionfish envenomations. As the introduction of lionfish is very likely irreversible, future actions should focus on five areas. 1) The population of lionfish should be tracked. 2) Research should be conducted so that scientists can make better predictions regarding the status of the invasion and the effects on native species, ecosystem function, and ecosystem services. 3) Outreach and education efforts must be increased, both specifically toward lionfish and more generally toward the aquarium trade as a method of fish introductions. 4) Additional regulation should be considered to reduce the frequency of marine fish introduction into U.S. waters. However, the issue is more complicated than simply limiting the import of non-native species, and these complexities need to be considered simultaneously. 5) Health care providers along the east coast of the United States need to be notified that a venomous fish is now resident along the southeast United States. The introduction and spread of lionfish illustrates the difficulty inherent in managing introduced species in marine systems. Introduced species often spread via natural mechanisms after the initial introduction. Efforts to control the introduction of marine fish will fail if managers do not consider the natural dispersal of a species following an introduction. Thus, management strategies limiting marine fish introductions need to be applied over the scale of natural ecological dispersal to be effective, pointing to the need for a regional management approach defined by natural processes not by political boundaries. The introduction and success of lionfish along the east coast should change the long-held perception that marine fish invasions are a minimal threat to marine ecosystems. Research is needed to determine the effects of specific invasive fish species in specific ecosystems. More broadly, a cohesive plan is needed to manage, mitigate and minimize the effects of marine invasive fish species on ecosystems that are already compromised by other human activities. Presently, the magnitude of marine fish introductions as a stressor on marine ecosystems cannot be quantified, but can no longer be dismissed as negligible. (PDF contains 31 pages)
Resumo:
The Ecological Society of America and NOAA's Offices of Habitat Conservation and Protected Resources sponsored a workshop to develop a national marine and estuarine ecosystem classification system. Among the 22 people involved were scientists who had developed various regional classification systems and managers from NOAA and other federal agencies who might ultimately use this system for conservation and management. The objectives were to: (1) review existing global and regional classification systems; (2) develop the framework of a national classification system; and (3) propose a plan to expand the framework into a comprehensive classification system. Although there has been progress in the development of marine classifications in recent years, these have been either regionally focused (e.g., Pacific islands) or restricted to specific habitats (e.g., wetlands; deep seafloor). Participants in the workshop looked for commonalties across existing classification systems and tried to link these using broad scale factors important to ecosystem structure and function.
Resumo:
Few studies have quantified the extent of nocturnal cross-habitat movements for fish, or the influence of habitat adjacencies on nutrient flows and trophodynamics. To investigate the patterns of nocturnal cross-boundary movements of fish and quantify trophic connectivity, fish were sampled at night with gillnets set along the boundaries between dominant habitat types (coral reef/seagrass and mangrove/seagrass) in southwestern Puerto Rico. Fish movement across adjacent boundary patches were equivalent at both coral reefs and mangroves. Prey biomass transfer was greater from seagrass to coral reefs (0.016 kg/km) and from mangroves to seagrass (0.006 kg/km) but not statistically significant, indicating a balance of flow between adjacent habitats. Pelagic species (jacks, sharks, rays) accounted for 37% of prey biomass transport at coral reef/seagrass and 46% at mangrove/seagrass while grunts and snappers accounted for 7% and 15%, respectively. This study indicated that coral reefs and mangroves serve as a feeding area for a wide range of multi-habitat fish species. Crabs were the most frequent prey item in fish leaving coral reefs while molluscs were observed slightly more frequently than crabs in fish entering coral reefs. For most prey types, biomass exported from mangroves was greater than biomass imported. The information on direction of fish movement together with analysis of prey data provided strong evidence of ecological linkages between distinct adjacent habitat types and highlighted the need for greater inclusion of a mosaic of multiple habitats when attempting to understand ecosystem function including the spatial transfer of energy across the seascape.
Resumo:
Over the past four decades, the state of Hawaii has developed a system of eleven Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning marine protected area (MPA) design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Team developed digital benthic habitat maps for all MLCD and adjacent habitats. These maps were used to evaluate the efficacy of existing MLCDs for biodiversity conservation and fisheries replenishment, using a spatially explicit stratified random sampling design. Coupling the distribution of habitats and species habitat affinities using GIS technology elucidates species habitat utilization patterns at scales that are commensurate with ecosystem processes and is useful in defining essential fish habitat and biologically relevant boundaries for MPAs. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that the abundance and distribution of species and assemblages exhibited strong correlations with habitat types. Fish assemblages in the colonized and uncolonized hardbottom habitats were found to be most similar among all of the habitat types. Much of the macroalgae habitat sampled was macroalgae growing on hard substrate, and as a result showed similarities with the other hardbottom assemblages. The fish assemblages in the sand habitats were highly variable but distinct from the other habitat types. Management regime also played an important role in the abundance and distribution of fish assemblages. MLCDs had higher values for most fish assemblage characteristics (e.g. biomass, size, diversity) compared with adjacent fished areas and Fisheries Management Areas (FMAs) across all habitat types. In addition, apex predators and other targeted resources species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations. Habitat complexity, quality, size and level of protection from fishing were important determinates of MLCD effectiveness with respect to their associated fish assemblages. (PDF contains 217 pages)
Resumo:
Policy makers, natural resource managers, regulators, and the public often call on scientists to estimate the potential ecological changes caused by both natural and human-induced stresses, and to determine how those changes will impact people and the environment. To develop accurate forecasts of ecological changes we need to: 1) increase understanding of ecosystem composition, structure, and functioning, 2) expand ecosystem monitoring and apply advanced scientific information to make these complex data widely available, and 3) develop and improve forecast and interpretative tools that use a scientific basis to assess the results of management and science policy actions. (PDF contains 120 pages)
Resumo:
Executive Summary: The marine environment plays a critical role in the amount of carbon dioxide (CO2) that remains within Earth’s atmosphere, but has not received as much attention as the terrestrial environment when it comes to climate change discussions, programs, and plans for action. It is now apparent that the oceans have begun to reach a state of CO2 saturation, no longer maintaining the “steady-state” carbon cycle that existed prior to the Industrial Revolution. The increasing amount of CO2 present within the oceans and the atmosphere has an effect on climate and a cascading effect on the marine environment. Potential physical effects of climate change within the marine environment, including ocean acidification, changes in wind and upwelling regimes, increasing global sea surface temperatures, and sea level rise, can lead to dramatic, fundamental changes within marine and coastal ecosystems. Altered ecosystems can result in changing coastal economies through a reduction in marine ecosystem services such as commercial fish stocks and coastal tourism. Local impacts from climate change should be a front line issue for natural resource managers, but they often feel too overwhelmed by the magnitude of this issue to begin to take action. They may not feel they have the time, funding, or staff to take on a challenge as large as climate change and continue to not act as a result. Already, natural resource managers work to balance the needs of humans and the economy with ecosystem biodiversity and resilience. Responsible decisions are made each day that consider a wide variety of stakeholders, including community members, agencies, non-profit organizations, and business/industry. The issue of climate change must be approached as a collaborative effort, one that natural resource managers can facilitate by balancing human demands with healthy ecosystem function through research and monitoring, education and outreach, and policy reform. The Scientific Expert Group on Climate Change in their 2007 report titled, “Confronting Climate Change: Avoiding the Unmanageable and Managing the Unavoidable” charged governments around the world with developing strategies to “adapt to ongoing and future changes in climate change by integrating the implications of climate change into resource management and infrastructure development”. Resource managers must make future management decisions within an uncertain and changing climate based on both physical and biological ecosystem response to climate change and human perception of and response to the issue. Climate change is the biggest threat facing any protected area today and resource managers must lead the charge in addressing this threat. (PDF has 59 pages.)