301 resultados para 0401 Atmospheric Sciences
em Aquatic Commons
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The annual cycle and non-seasonal variability of streamflow over a network of stations in western North America and Hawaii is studied in terms of atmospheric forcing elements. The phase lag between the annual cycle of streamflow and precipitation varies considerably over this network, as does the persistence of monthly streamflow anomalies. This lag effect appears to be largely a function of the relative amount of snow laid down in a particular basin. In addition to the rather strong annual cycle that exists in mean streamflow and its variance at most of the stations, there is also a distinct annual cycle in the autocorrelation of streamflow anomalies that is related to the interplay between the temperature and precipitation annual cycles; of particular importance is the existence of stored water in the form of a snow pack.
Resumo:
We examine monthly and seasonal patterns of precipitation across various elevations of the eastern Central Valley of California and the Sierra Nevada. A measure of the strength of the orographic effect called the “precipitation ratio” is calculated, and we separate months into four groups based on being wet or dry and having low or high precipitation ratios. Using monthly maps of mean 700-mb height anomalies, we describe the northern hemisphere mid-tropospheric circulation patterns associated with each of the four groups. Wet months are associated with negative height anomalies over the eastern Pacific, as expected. However, the orientation of the trough is different for years with high and low precipitation ratios. Wet months with high ratios typically have circulation patterns factoring a west-southwest to east-northeast storm track from around the Hawaiian Islands to the Pacific Northwest of the United States. Wet months with low precipitation ratios are associated with a trough centered near the Aleutians and a northwest to southeast storm track. Dry months are marked by anticyclones in the Pacific, but this feature is more localized to the eastern Pacific for months with low precipitation ratios than for those with high ratios. Using precipitation gauge and snow course data from the American River and Truckee-Tahoe basins, we determined that the strength of the orographic effect on a seasonal basis is spatially coherent at low and high elevations and on opposite sides of the Sierra Nevada crestline.
Resumo:
A significant fraction of the total nitrogen entering coastal and estuarine ecosystems along the eastern U.S. coast arises from atmospheric deposition; however, the exact role of atmospherically derived nitrogen in the decline of the health of coastal, estuarine, and inland waters is still uncertain. From the perspective of coastal ecosystem eutrophication, nitrogen compounds from the air, along with nitrogen from sewage, industrial effluent, and fertilizers, become a source of nutrients to the receiving ecosystem. Eutrophication, however, is only one of the detrimental impacts of the emission of nitrogen containing compounds to the atmosphere. Other adverse effects include the production of tropospheric ozone, acid deposition, and decreased visibility (photochemical smog). Assessments of the coastal eutrophication problem indicate that the atmospheric deposition loading is most important in the region extending from Albemarle/Parnlico Sounds to the Gulf of Maine; however, these assessments are based on model outputs supported by a meager amount of actual data. The data shortage is severe. The National Research Council specifically mentions the atmospheric role in its recent publication for the Committee on Environmental and Natural Resources, Priorities for Coastal Ecosystem Science (1994). It states that, "Problems associated with changes in the quantity and quality of inputs to coastal environments from runoff and atmospheric deposition are particularly important [to coastal ecosystem integrity]. These include nutrient loading from agriculture and fossil fuel combustion, habitat losses from eutrophication, widespread contamination by toxic materials, changes in riverborne sediment, and alteration of coastal hydrodynamics. "
Resumo:
A distinct, 1- to 2-cm-thick flood deposit found in Santa Barbara Basin with a varve-date of 1605 AD ± 5 years testifies to an intensity of precipitation that remains unmatched for later periods when historical or instrumental records can be compared against the varve record. The 1605 AD ± 5 event correlates well with Enzel's (1992) finding of a Silver Lake playa perennial lake at the terminus of the Mojave River (carbon-14-dated 1560 AD ± 90 years), in relative proximity to the rainfall catchment area draining into Santa Barbara Basin. According to Enzel, such a persistent flooding of the Silver Lake playa occurred only once during the last 3,500 years and required a sequence of floods, each comparable in magnitude to the largest floods in the modern record. To gain confidence in dating of the 1605 AD ± 5 event, we compare Southern California's sedimentary evidence against historical reports and multi-proxy time-series that indicate unusual climatic events or are sensitive to changes in large-scale atmospheric circulation patterns. The emerging pattern supports previous suggestions that the first decade of the 17th century was marked by a rapid cooling of the Northern Hemisphere, with some indications for global coverage. A burst of volcanism and the occurrence of El Nino seem to have contributed to the severity of the events. The synopsis of the 1605 AD ± 5 years flood deposit in Santa Barbara Basin, the substantial freshwater body at Silver Lake playa, and much additional paleoclimatic, global evidence testifies for an equatorward shift of global wind patterns as the world experienced an interval of rapid, intense, and widespread cooling.
Resumo:
This paper is an attempt to provide a summary review of conclusions from previous studies on this subject. They have been organized under the following subject headings: Conceptualization of the greenhouse effect; The climatic effect of doubled carbon dioxide; Interpretation of the climatic record; Diagnosis of apparent and possible model deficiencies; The paleoclimatic record.
Resumo:
Pacific sea surface temperatures (SSTs) are examined for their associations with (1) summer rainfall, and (2) the latitude location of the mid-tropospheric subtropical high pressure ridge (STR) in the southwestern United States during 1945 to 1986. Extreme northward (southward) displacements of STR are associated with wet (dry) summers over Arizona and an enhanced (weakened) gradient of SST off the California and Baja coasts. These tend to follow winters marked by positive (negative) phases of the PNA, Pacific/North America, teleconnection pattern. Recent decadal variations of Arizona summer rainfall (1950s wet; 1970s dry) appear similarly related to southwestern United States synoptic circulation and eastern Pacific SSTs.
Resumo:
We describe a preliminary investigation into large-scale atmospheric and surface moisture variations over North America. We compare large-scale hydrologic budgets in the Los Alamos general circulation model (GCM) to observed precipitation and vertically integrated atmospheric moisture fluxes derived from the National Meteorological Center's operational analyses. THe GCM faithfully simulates the integrated flux divergence and P-E differences. However, the integrated moisture content is too low, and precipitation and evaporation are too high. The model produces summertime soil moisture dryness, which supports previous studies showing increased droughts under warmer conditions.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We examined atmospheric circulation conditions conducive to occurrence of winter floods that exceed the 10-year peak discharge on rivers in six hydroclimatic subregions in Arizona, southern Utah, Nevada, and California. ... This relationship between flooding and broad-scale atmospheric patterns in the modern record will aid in paleoclimatic interpretations of paleoflood records over the last few thousand years.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The influence of ENSO on atmospheric circulation and precipitation over the western United States is presented from two perspectives. First, ENSO-associated circulation patterns over the North Pacific/North America sector were identified using an REOF (rotated empirical orthogonal function) analysis of the 700-mb height field and compositing these for extreme phases of the Southern Oscillation Index. ... Second, we examine the variability of precipitation during the warm and cool phases of ENSO for different locations in the western United States.
Resumo:
In studying hydrosphere, atmosphere, and biosphere interactions, it is useful to focus on specific subsystem processes and energy exchanges (forcing). Since subsystem scales range over ten orders of magnitude, it may be difficult to focus research on scales that will yield useful results in terms of establishing causal and predictive connections between more easily and less easily observed subsystems. In an effort to find pertinent scales, we have begun empirical investigations into relationships between atmospheric, oceanic, and biological systems having spatial scales exceeding 10^3 kilometers and temporal scales of six months or more.
Resumo:
The goal of this research is to identify key features of atmospheric circulation that influence winter climate variability in the Sonoran Desert region. This relationship between winter climate and atmospheric circulation is investigated through the use of indices, which describe the principal features of circulation patterns.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Large-scale changes in the growth and decay of land plants can be deduced from trends in the concentration of atmospherics [sic] carbon dioxide, after removing signals in the recorded data caused by oceanic and industrial disturbances to the concentration.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Catch of coho salmon off the coast of Washington and Oregon since 1925 appears to be related to large-scale events in the atmosphere, which in turn affect ocean currents and coastal upwelling intensities in the northeastern Pacific. At least two time scales of variations can be identified. The first is that of the El Nino/Southern Oscillation phenomenon giving rise to an irregular cycle of between 3 to 7 years. ... The second time scale of variation seems to have a periodicity of about 20 years, although this is based on a limited dataset. ... This paper endeavors to describe how, if real, these atmospheric/oceanic effects are integrated and might affect the salmon catch. The possibility must also be considered that the atmospheric events are symbiotically related to the oceanic events and, further, that both may be enmeshed in even longer-term variability of climate.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Synoptic dendroclimatology uses dated tree rings to study and reconstruct climate from the viewpoint of the climate's weather components and their relationship to atmospheric circulation. This approach defines a connection between large-scale circulation and ring-width variation at local sites using correlation fields, composite maps, indexing, and other circulation-based methodologies.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): In this work, I examine patterns of atmospheric circulation associated with tree growth anomalies at mid-to-high latitudes (2000-3500 meters).