4 resultados para 03091052 CTD-164
em Aquatic Commons
Resumo:
(PDF contains 63 pages.)
Resumo:
Representatives from the family of Lemnaceae (duckweed) make ideal experimental material for research into a succession of phytophysiological processes with regard to growth rate and vegetative reproduction. They are also easy to maintain in sterile cultures. Lemnaceae belong to the higher flowering plants (flowers are rarely produced), however they are distinguished by a much simplified morphological and anatomical structure. As water plants they possess the advantage, that they can be cultivated in synthetic media under laboratory conditions controlled by the application of both a known light intensity and temperature. This paper describes experimental research of growth of Lemnaceae in different conditions. Some of the variables were mineral media, illumination and aeration.
Resumo:
When flow returns to a temporary stream a certain number of plant and animal species establish themselves more or less rapidly on the stream-bed constituting the initial phase of evolution of the re-population. This phase is essentially characterised by the ”awakening” of animal species that passed the dry season in a dormant state and by the development of the first unicellular algae that constitute the periphyton. Then they are succeeded by more or less stable animal groups and the structural complexity increases. The authors of the present study aim to analyse the dynamics of community succession from the return of water to the biotope until its drying up. It is attempted to determine the influence of the duration of flow on this evolution. This work is based on the analysis of population diversity with reference to its two complementary aspects, species richness and equitability. The River Destel which was studied for this project is situated in the Gorge of Ollioules near the town of Toulon.
Resumo:
The Nutrient Enhanced Coastal Ocean Productivity (NECOP) Program is a component of NOAA's Coastal Ocean Program. The central hypothesis of this research is: Anthropogenic nutrient inputs have enhanced coastal ocean productivity with subsequent impacts on coastal ocean water quality, living resource yields, and the global marine carbon cycle. The initial study area for this program is the Mississippi/Atchafalaya River Outflow and adjacent Louisiana shelf region.