266 resultados para unfertilized eggs
Resumo:
There are two main ways in which gravel composition and changes therein arising from siltation, can influence the survival of young salmonids. First, the composition of the gravel will affect its permeability and, hence, may influence the survival of eggs and alevins through its effect upon the rate of supply of oxygen and the rate of removal of metabolic products. Second, the composition of the gravel may affect the ease, or otherwise, of emergence at the time of swim-up and alevins may become trapped in the gravel and perish. This aspect is the main concern of the present report. Experiments were conducted to examine the effects upon fry emergence of a sand layer deposited on the gravel surface. The study concludes that fry of brown trout and Atlantic salmon emerged through layers of sand up to 8 cm thick but the percentage emergence, even from the controls with no sand, was relatively low (5 - 68%). There was no firm evidence that the experimental treatments influenced percentage emergence, timing of emergence or weight of fry at the time of emergence.
Resumo:
Hatchling American Alligators (Alligator mississippiensis) produced from artificially incubated wild eggs were returned to their natal areas (repatriated). We compared artificially incubated and repatriated hatchlings released within and outside the maternal alligator’s home range with naturally incubated hatchlings captured and released within the maternal alligator’s home range on Lake Apopka, Lake Griffin, and Orange Lake in Florida. We used probability of recapture and total length at approximately nine months after hatching as indices of survival and growth rates. Artificially incubated hatchlings released outside of the maternal alligator’s home range had lower recapture probabilities than either naturally incubated hatchlings or artificially incubated hatchlings released near the original nest site. Recapture probabilities of other treatments did not differ significantly. Artificially incubated hatchlings were approximately 6% shorter than naturally incubated hatchlings at approximately nine months after hatching. We concluded that repatriation of hatchlings probably would not have long-term effects on populations because of the resiliency of alligator populations to alterations of early age-class survival and growth rates of the magnitude that we observed. Repatriation of hatchlings may be an economical alternative to repatriation of older juveniles for population restoration. However, the location of release may affect subsequent survival and growth.
Resumo:
The description of the embryonic and early larval stages of three species of marine fishes: the anhovy, Anchoa marinii, the menhaden Brevoortia aurea and the gurnard, Prionotus nudigula is given. The time required from the fertilization to the hatching for each species was calculated. The eggs of these three species are found in the plankton collected in the zone situated in the vicinity of Mar del Plata. The eggs are only found in the plancton which was close to the shore. The anchoa marinii eggs are found in the sea from the middle of December at a water temperature of approximately 16,0°C to the end of April. Their greatest concentration takes place in January at 20,0-21,0°C. The eggs of Brevoortia aurea are found in the plakton from the beginning of October at a water temperature of approximately 10,0°C to the middle of December. Their greatest concentration takes place in November at 13,0-15,0°C. Only once were the menhaden's eggs can be found in the sea from the middle of November at the water temperature of aproximately 13,0° to the end of April. Their greatest concentration takes place in January and February at 20,0-21,0°C.
Resumo:
English: For nearly a century, fisheries scientists have studied marine fish stocks in an effort to understand how the abundances of fish populations are determined. During the early lives of marine fishes, survival is variable, and the numbers of individuals surviving to transitional stages or recruitment are difficult to predict. The egg, larval, and juvenile stages of marine fishes are characterized by high rates of mortality and growth. Most marine fishes, particularly pelagic species, are highly fecund, produce small eggs and larvae, and feed and grow in complex aquatic ecosystems. The identification of environmental or biological factors that are most important in controlling survival during the early life stages of marine fishes is a potentially powerful tool in stock assessment. Because vital rates (mortality and growth) during the early life stages of marine fishes are high and variable, small changes in those rates can have profound effects on the properties of survivors and recruitment potential (Houde 1989). Understanding and predicting the factors that most strongly influence pre-recruit survival are key goals of fisheries research programs. Spanish: Desde hace casi un siglo, los científicos pesqueros han estudiado las poblaciones de peces marinos en un intento por entender cómo se determina la abundancia de las mismas. Durante la vida temprana de los peces marinos, la supervivencia es variable, y el número de individuos que sobrevive hasta las etapas transicionales o el reclutamiento es difícil de predecir. Las etapas de huevo, larval, y juvenil de los peces marinos son caracterizadas por tasas altas de mortalidad y crecimiento. La mayoría de los peces marinos, particularmente las especies pelágicas, son muy fecundos, producen huevos y larvas pequeños, y se alimentan y crecen en ecosistemas acuáticos complejos. La identificación los factores ambientales o biológicos más importantes en el control de la supervivencia durante las etapas tempranas de vida de los peces marinos es una herramienta potencialmente potente en la evaluación de las poblaciones. Ya que las tasas vitales (mortalidad y crecimiento) durante las etapas tempranas de vida de los peces marinos son altas y variables, cambios pequeños en esas tasas pueden ejercer efectos importantes sobre las propiedades de los supervivientes y el potencial de reclutamiento (Houde 1989). Comprender y predecir los factores que más afectan la supervivencia antes del reclutamiento son objetivos clave de los programas de investigación pesquera.
Resumo:
English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab
Resumo:
Ethmalosa fimbriata (Bowdich) is the most abundant clupeid in the Ivorian artisanal fisheries. It represents over 60% of lagoon catches. In Aby lagoon the size at first sexual maturity is situated at 9.6 cm for male and 9.9 cm for female. The reproduction takes place twice a year during the high salinity periods from February to May and July to August. This reproduction does not affect significantly the sex-ratio, the mean of which varies from 35% to 36%, depending the period. The fecondity is very fluctuating and varies from 11000 eggs to 148000 eggs per female.
Resumo:
Different rearing facilities (concrete tanks, pens and ponds) were tested for suitability as spawning environments. The concrete tanks and the pens in the lagoon gave the best results as to the number of spawns obtained. Of the three types of spawning devices tested, containers with a 150 mm opening at one of the two ends were preferably used by the fish. The brooders in the spawning facilities spontaneously entered the spawning containers to deposit their eggs without external human intervention. Actual fecundity estimates ranged from 9805 to 40597.
Resumo:
Changes in the seasonal development of the gonads of female Chrysichthys nigrodigitatus, in Ebrié lagoon (Côte d'Ivoire) are described over an annual reproductive cycle. Seven macroscopic stages of gonad maturity were identified. There is a major spawning period from July to November. The mature fish spawn only once during the breeding season. There was a slightly higher correlation between fecundity and fish length than between fecundity and fish weight or gonad weight. Fecundity estimates ranged from 5438 to 36257 eggs and from 4878 to 87724 eggs, respectively for the fish in captivity and those in the natural environment.
Resumo:
Six populations of Ethmalosa fimbriata and six of Sarotherodon melanotheron have been analysed using enzymatic electrophoresis. The study of gene flow intensity in these two species indicate that: - In Ethmalosa fimbriata, a migratory species with high fecundity and pelagic eggs, there is a high gene flow between populations (3 Nm 83). - In Sarotherodon melanotheron, a sedentary and mouthbrooder species with low fecundity, there is a low gene flow between populations (1 Nm 4).
Resumo:
The River Lune was at one time one of the best salmon fisheries in England and Wales with very high catches to both rods and netsmen. During the 1960's, the stock was decimated by the disease Ulcerative Dermal Necrosis which caused a dramatic reduction in catches. Catches have not recovered to pre-disease levels. The target egg deposition rate for the River Lune system which should produce the maximum number of surplus fish returning to the system has been determined at 13.8 million eggs. This will require 4,779 adult salmon to survive to successfully spawn. Under current rates of exploitation, the target egg deposition will occur at a declared rod catch of 1,974 salmon and a net catch of 2,627 salmon. Two automatic fish counters are in operation on the river system. Data from these suggest that, within the measures of compliance, the river has met it's target egg deposition for the last 3 years.
Resumo:
Descriptions of spawning and larval development of Ethmalosa, up to the vitelline vesicle resorption stage, are made from plankton samplings in the Ebrié coastal lagoon and from artificially fertilized eggs. Spawning takes place from November to June in waters with salinities of 18 to 26 parts per thousand, and temperatures of 22.8 to 30.2 degrees, for 13-14 cm long fishes.
Resumo:
In February 1996 A Strategy for the Management of Salmon in England and Wales was launched by the National Rivers Authority. The strategy concentrates on four main objectives for the management of salmon fisheries in England and Wales: (i) Optimise the number of salmon returning to home water fisheries, (ii) Maintain and improve the fitness and diversity of salmon stocks, (iii) Optimise the total economic value of surplus stocks, (iv) Ensure necessary costs are met by beneficiaries. These four objectives will be addressed through local Salmon Action Plans (SAPs) which will be produced for each of the principle salmon rivers in England and Wales by the year 2001. A consultation report was produced for the River Ribble and released publicly in October 1999. This document determined an egg deposition figure of 8.5 million eggs for the Ribble, that would allow maximum gain from the net and rod fisheries; raised a number of issues which are thought to currently limit salmon production; identified actions which may be undertaken by the Environment Agency and other bodies to improve stocks. This action plan re-addresses the issues raised in the consultation document, taking into account the comments received, and also identifies areas of possible improvement in data gathering that would allow more accurate estimation of the spawning target and compliance in future years. The progress of this plan will be monitored and reported annually.
Resumo:
This paper deals with the development and use of biological reference points for salmon conservation on the River Lune, England. The Lune supports recreational and net fisheries with annual catches in the region of 1,000 and 1356 salmon respectively. Using models transported from other river systems, biological reference points exclusive to the Lune were developed; specifically the number of eggs deposited and carrying capacity estimates for age 0+ and 1+ parr. The conservation limit was estimated at 11.9 million eggs and between 1989 and 1998 was exceeded in two years. Comparison of juvenile salmon densities in 1991 and 1997 with estimates of carrying capacity indicated that 0+ and 1+ parr densities were at around 60 % of carrying capacity and may relate to the number of eggs deposited in 1990 and 1996 being approximately 70% of the target value. The paper discusses the management actions taken in order to ensure that the management target of the conservation limit being met four years out of five is delivered. It also discusses the balance between conservation and exploitation and the socio-economic decisions made in order to ensure parity of impacts on the rod and net fisheries. The regulations have been enforced since 1999 and the paper concludes with an assessment of the actions taken to deliver the management targets, over the last five years.
Resumo:
In 1996 a Strategy for the Management of Salmon in England and Wales was launched by the National Rivers Authority setting out objectives for the management of Salmon fisheries. These objectives are to be met through local Salmon Action Plans which are to be produced for each of the 68 principal salmon rivers in England and Wales by December 2003. A consultation document was produced for the river Wyre and released publicly during October 2003. This document: • Determined an egg deposition figure of 1.27 million eggs which would allow maximum gain from the fisheries • Raised a number of issues which are though to limit existing salmon production. • Identified actions which may be undertaken by the Environment Agency and other bodies to improved stocks. The document looks at the issues in the consultation document and also highlights some important changes to historic egg deposition rates following further analysis of the data. Some of the major issues addressed in the plan are: • Severe low flows on specific tributaries • Reduced juvenile production caused by insufficient habitat. • Changes in flow regime resulting in the wash out of gravels and redds. • The impact of man made structures preventing access to suitable spawning areas, and preventing the downstream distribution of spawning gravels.
Resumo:
This report looks at previous findings that egg survival was related to the percentage of fine solids in the spawning gravels of the River Taff. Green salmonid eggs were planted out at 8 sites in the Taff catchment; and eyed salmonid eggs were planted out at 27 sites. Gravel cores were taken at 18 of these sites and an analysis of their composition was carried out, particular attention being given to the pecentage of particles less than 1mm. As well as its method, the report includes its own findings and recommendations, which includes other factors influencing egg survival such as the need for water quality improvements.