128 resultados para reproductive period
Resumo:
A study was conducted at Banate Bay, Iloilo, from November 1975 to March 1976. Trials were conducted using spat collectors of four types, but no Modiolus metcalfei spat settled on any of the experimental collectors during the entire study period. Instead they attached to the exposed posterior half of the living Modiolus collected for reproductive cycle studies. The aquaculture potential of the brown mussel is considered to be low. Improvement of its production potential should be approached along the line of resource management rather than aquaculture. This management should be aimed at two objectives: (1) maintenance of enough adults on settlement surfaces, and (2) provision of space to allow new recruitments to grow. A possible solution, therefore, is controlled harvesting or thinning after the peak in the settlement season. In this manner, the chances of the mussel bed recovering year after year may be enhanced.
Resumo:
The influence of a fish gut bacterium Lactobacillus sp on the production of swordtail Xiphophorus helleri was studied for a period of one year. The Lactobacillus sp P21 produced bacteriocin-like inhibitory substance and exhibited wide spectrum of action against Aeromonas hydrophila, Bacillus spp, Pseudomonas spp and Citrobacter freundi in vitro. The growth performance of X. helleri reared in the presence of Lactobacillus P21 at 106/ml rearing water was better than the control. The total plate counts, total MRS agar counts and the counts of motile aeromonads, presumptive pseudomonads, lactose fermenters and lactose non-fermenters in the gut of probiotic group were comparatively low than the control. On day 60 the count of Lactobacillus sp P21 was observed to be log 5.28/g in the gut of X. helleri indicating colonization of this bacterium in the gastrointestinal tract. The fecundity of X. helleri was in the range of 9-134. On average, it produced from 39.42±18.72 fry/female in control group to 53.00±23.57 fry/female in probiotic group. The increase in average fecundity in probiotic group over the control group was about 25%. There existed significant difference between probiotic group and control in respect of average fecundity/female (p<0.02), average number of fry survived /female (p<0.006) and average number of fry dead/female (p<0.029). The results of the present study demonstrated that the rearing of X. helleri in probiotic-enriched water have growth inducing ability and favourably influenced the reproductive performance in terms of high fecundity, high fry survival, reduced fry mortality and reduced fry deformity.
Resumo:
As the most of the fish resources are known and exploited, protecting their generation is of the greatest importance. Aquaculture is one of the efficient procedures in protecting and reviving fish resources and knowing about the reproductive cycle and gonads development has an important role in approaching this aim. Liza abu belongs to the family Mugilidae that according to its resistance to the environmental condition and its fast growth , can be introduced as a fish with economical value. As there is no scientific data on the reproductive biology of this species , study on the reproductive biology and gonad development is considered as the aim of this research . For this purpose , 360 samples of this species were investigated during the period from February 2007 to January 2008 in Khozestan Province . After studing morphological and histological characteristics of gonad specimen , they were prepared through histological method. Samples were prepared through usual histological method and studied under light microscope. According to the results, the maturity stages of male and female Liza abu were separated to six different successive stages. In ovaries , these stages were as follow : In stage І, the oocytes were small , this stage was observed from July to October . In stage ІІ, considerable growth was observed in the oocytes . This stage was observed from October to January . In stage III, due to vitellogenesis, the maximum growth was observed and three layers of theca, granullosa and follicle cells were visible. This stage was observed during January and February . In stage IV, migration of germinal vesicle was observed and due to hydration of the oocytes , their diameter was increased. The ovaries were yellowish and in maximum size and ovules could be easily observed with naked-eye . This stage was observed in February and March . In stage V, spawning occured. This stage was observed in April . In stage VI, ovaries consisted of immature and atretic oocytes and also empty follicles. This stage was observed in May and June. In testes , these stages were as follow : In stage I , the testes were small in size and contained the spermatogonia which were the only cellular components.This stage was observed in August and September . In stage II (maturing virgin ) , the spermatogonia and the primary spermatocytes were visible. This stage was observed in October . In stage III (developing), intensive spermatogenesis was occured and the primary and the secondary spermatocytes were the most visible cells during this stage .This stage was observed from November to January. In stage IV(developed), cells of all stages of spermatogenesis could be seen but the secondary spermatocytes and spermatids were in large number. This stage was observed from January to March. In stage V , the testes were filled with sperms. This stage was observed in March and April .In stage VI, residual spermatozoa and the spermatogonia were visible in the testes. This stage was observed from May to August. According to cyclic changes in GSI, sexual maturation in breeding begins in January and spawning occurs in April. The ova diameter ranged from 30.75 μ in stage I to 472.19 μ in stage IV. In this study , the sex ratio was 1:2.7, and male and female percentage were 27.02% and 72.98% respectively. This means that females predominate males. In this study absolute fecundity was calculated and changing between 30805.44 to 431247.3 was observed and absolute fecundity was calculated 111275.3 in average.
Resumo:
Effects of various combinations of photoperiod and temperature (NL-NT, LD 15:9-28°C, NL-28°C and LD 15:9 NT) were studied on testicular activity and pituitary gonadotropic cells in Channa punctatus during resting phase of reproductive cycle. Long photoperiod (LD 15:9-28°C) and warm temperature (NL-28°C) regimes were found to be more effective for testicular maturation and secretory activity of gonadotropic cells suggesting testicular maturation via brain-pituitary-testicular axis.
Resumo:
There are a lot of evidence that show hvdrocarbones cause some defect in reproduction and growth of bivalves. Bivalves are filter-feeder, thus accumulate more hydrocarbones in their tissue. In this study adult pearl producing oysters (Pinctada fucata) are used for all experimens. Samples of oysters, water and sediment from four natural beds; Nakhiloo (clean), Hendurabi (semipolluted), Lavan 1 (semipolluted) and Lavan 2 (polluted) were gatherd for 13 succesive months. Temperature, salinity, pH, oxygen and turbidity were recorded in each sampling. Oysters were kept in laboratory for adapation and then their length (DVM) were measured. Hemolymph samples were collected by insuline syring. Sediments and soft tissues of oysters were dissolved in carbon tetrachloride and when heated to extract oil hydrocarbones. UV, GC and IR were used to assay oil hydrocarbones. Accumulation of hydrocabones in soft tissue were as follows : Kakhiloo
Resumo:
Sea cucumbers belong to phylum Echinodermata, order Holothuroidea are an abundant and diverse group of Invertebrates, with over 1400 species occuring from the intertidal to the deepest oceanic trenches. Sea cucumbers are important components of the food chain in temperate and coral reef ecosystems and they play an important role as deposite feeders and suspension feeders. Rapid decline in populations may have serious consequences for the survival of other species that are part of the same complex food web,as the eggs, larve and juveniles constitute an important food source for the other marine species including crustaceans, fish and mollusks. In addition sea cucumbers are often called the earthworms of the sea, because they are responsible for the extensive shifting and mixing of the substrate, and recycling of detrital matter. Sea cucumbers consume and grind sediment and organic material into finer particles , turning over the top layers of sediment in lagoons , reefs and other habitats and allowing the penetration of oxygen. While the taxonomy of the holothurian families is generally well known , the distinction of similar species is difficult. There are relatively few holothurian taxonomist.Most sea cucumber species can be identified by Holothurin taxonomists by using the calcareous skeletal ossicles found in the body wall. In this study , at first a sea cucumber from Kish island in Persian gulf has recognized. Individuals collected from west and east extend far away into north and south of coral reefs by diving. I have checked them morphologically and anatomically.Then with key to the orders of the Holothuroidea, They belong to the Aspidochirotida with key to the families of Aspidochirotida, they were in Stichopodidae families and with key to the genus of Stchopodidae, they were Stichopus. Then ossicles were extracted at National Museum of Natural History, by Dr David Pawson. The ossicles were measured on a transect across a slide prepared from the mid-dorsal region of each specimen.The one we have in the shallow waters of Kish island, is Stichopus hermanni, a massive holothurian, body broad, considerably flattened ventraly ,the dorsal side slightly arched and the lateral sides almost vertical; body wall fairy thick and soft ; mouth subterminal; anus central; tentacles usually 20 in number of length and leaf shaped. Numerous ossicles consisting of table with large discs having usually 7 to 15 peripheral holes, but often irregular or incomplete and spire of moderate height ending in a group of spinelets, rosettes of variable development, and c-shaped rods. Color (exept papillae)partly remained after preservation in alcohol which is found at the depth of 4 to 8 meters, on coral reef. Furthermore, the sexual reproductive cycle was described using standard methods. Gonads were removed and transferred to Bouin's fixative for four weeks and then processed according to standard embedding technique. To prevent the loss of tubule contents during embedding, the tubule sections, were cut well beyond the segment selected for sectioning. For each individual, six sections, each section with 5µm diameter by microtome were cut from tubules. These sections were first placed on gelatin coated slides (the gelatin was heated to 42°c) and then transferred to the oven at 37°c for one hour. This technique usually prevents the fragil tubules from breaking and the loss of gametes. The slides were stained with Eosin and Hematoxylin, and good resolution of the various cell types achieved.A second series of slides was stained with the Periodic Acid Schiff(PAS) to identify polysaccharides(glycogen). Monthly sampling was occurred.The sexual reproductive cycle was defined through the combined use of these criteria: Monthly percentages of the gonad stages for each sex, the monthly gonad index (GI) , given as the ratio of the wet gonad weight (G) to the dray weight (DW)and the monthly percentage of individuals that undetermined sex. The gonad consists of two tufts of tubules on which saccules develop. Gonadal development was classified into five stages: post spawning, recovery, growth, advanced growth, and mature stage that were adapted from the earlier studies of holothurians. Histological preparations showed that the sex of larger individuals could be identified by the presence of oogonia and young oocytes in females, and spermatogonic stages in males.The mean diameter of the tubules and gonadal mass follow annual cycles, increasing from late winter through spring, and dropping abruptly after spawning in the summer. Gametogenesis is generally a prolongate process and begins in March. By summer the ovarian tubules contain oocytes with diameter of 120-240 pm and the testicular tubules contain an abundance of spermatozoa (diameter 5-6 gm ).Following spawning the predominant activity within the spent tubules is phagocytosis of the residual gamets.The active phase of gametogenesis (March to July), coincides with an increasing photoperiod regim, and an accelerated gametogenesis occurs in July when temperature is high. Throughout the year, the gonad of Stichopus hermanni is larger in males than in females, and this is due to the number of tubules in the testis rather than to tubules length or diameter.
Resumo:
Annual cycle of gonad development and spawning in pearl oyster, Pinctada ficata (Gould) in Nakhiloo, Northeast Persian Gulf, was investigated over two years from August 1994 to June 1996. Gonadal condition was assessed by staging criteria to describe gametogenic development from histological preparations of randomly collected individuals of all sizes. A bimodal gametogenic pattern with summer and autumn spawning periods was evident throughout the study. Gametogensis commenced in November-December which proceeded by major gonadal maturation during February-April. Summer spawning was observed from April to July with major spawning at the latter end. During spawning peak in July, low level of gametogensis was noticed. Gametogenic activity was picked up again in August-September which proceeded by autumn spawning from September to December. Towards the end of spawning season, incidence of gonadal inactivation increased. Minimum level of gonadal activity was observed in November. Temperature regime appears to have influential role in regulation of gametogenic and spawning processes. Gonadal development and spawning trends were similar in both sexes. P. radiaata was found to be protandrous hermaphrodite which matured as a male at shell height greater than 20 mm. Biseivality was uncommon and the sex ratio was about 1:1. Ultrastructure of gametes were investigated in the Pictada fucata (Gould). "Auxiliary cells" closely accociated with developing oocytes were observed. Each oocyte seems to be associated with only one secretory cell. which is characterized by an abundant rough endoplasmic reticulum at the onset of vitellogenesis. Contact between this cell and a developing oocytes is maintained by a desmosome-like junction which can be observed when the vitelline coat is formed. these "auxiliary or nursing cells" seem to play a tropic role in vitellogenesis, and may be involved in the formation of the vitelline coat of the oocytes. Oocytic degeneration is observed in this species, it is a continuous phenomenon of varing intensity throughout the year. The ultrastructural changes resulting in lysis of the oocyte are described. Mature spermatozoa consist of a broad, cap-shaped acrosomal vesicle, subacrosomal material, a round nucleus, two triplet substructure centrioles surrounded by four spherical mitochondria, and a flagellum anchored to the distal centriole and plasma membrane. Spermatozoa of Plucata closley resemble to those of other investigated Pteriidae. Changes in proximate composition of soft tissue and gonadal cycle of Pinctada fucata was studied. Mobilization and utilization of stored reserves are apparent during gametogenesis and gonadal maturation. Protein reserves are utilized during spermatogenesis while reserved carbohydrates form the main energy donor in oogenesis. The role of lipid as am.: energy reserve is second to that of carbohydrate.
Resumo:
The present paper deals on the histological description of the hake ovary made on the basis of gonad observations of 394 females during the period April 1966 March 1967. The material was obtained from weekly sampling of commercial catches carried out at the Institute of Marine Biology (Prov. Buenos Aires, Argentina). The anatomical and histological description of the standard ovary and the adopted terminology are given. The maturation process is divided into five periods, from ovocyte formation to yolked ovocyte formation, with its histological description. Ovary changes are analyzed on detail. The following conclusions were outlined: 1. Analysis demonstrated that although some specimens were totally spawned others, at the end of the spawning period, retaining a great number of ovocytes in different maturity stages. Therefore, postspawners have been classified as follows: Postspawned II : This stages is characterized by the empty ovarian structure, with ovocytes in stage II, which will remain in the resting phase untill next spawning season. Postspawned III and IV: Their main characteristics are: tissue destruction, bloody residuals and remaining ovocytes in stage III and IV, respectively. 2. Some transformations were found in ovaries of postspawned III and IV. They are classified as follows, according to its origin and structure: Developed from follicular cell membrane – a) Glandular formations, b) Epiteloid formations - Originated from remaining ovocytes, c) Ovocyte disintegration, d) Ovocyte with follicular cell infiltration. 3. All those structures derived from postpawners III and IV have a temporary character and will be reabsorbed. Their presence delay the recuperation of the organ and its reproductive functions. Consequently, the possibility of those structures acting as control mechanisms is suggested. 4. Transformations pointed out in paragraph Nº 2 prevent the possibility of consecutive spawning originated from the remaining ovocytes (II and IV). 5. No structures originated from postspawners III and IV were found during summer season. 6. Reproductive cycle of hake has been described monthly. It was observed that maturing ovaries predominate in summer (November-December).