130 resultados para marine protected networks
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop "Technologies and Methodologies for the Detection of Harmful Algae and their Toxins" convened in St. Petersburg, Florida, October 22- 24, 2008 and was co-sponsored by ACT (http://act-us.info); the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET, http://ciceet.unh.edu); and the Florida Fish and Wildlife Conservation Commission (FWC, http://www.myfwc.com). Participants from various sectors, including researchers, coastal decision makers, and technology vendors, collaborated to exchange information and build consensus. They focused on the status of currently available detection technologies and methodologies for harmful algae (HA) and their toxins, provided direction for developing operational use of existing technology, and addressed requirements for future technology developments in this area. Harmful algal blooms (HABs) in marine and freshwater systems are increasingly common worldwide and are known to cause extensive ecological, economic, and human health problems. In US waters, HABs are encountered in a growing number of locations and are also increasing in duration and severity. This expansion in HABs has led to elevated incidences of poisonous seafood, toxin-contaminated drinking water, mortality of fish and other animals dependent upon aquatic resources (including protected species), public health and economic impacts in coastal and lakeside communities, losses to aquaculture enterprises, and long-term aquatic ecosystem changes. This meeting represented the fourth ACT sponsored workshop that has addressed technology developments for improved monitoring of water-born pathogens and HA species in some form. A primary motivation was to assess the need and community support for an ACT-led Performance Demonstration of Harmful Algae Detection Technologies and Methodologies in order to facilitate their integration into regional ocean observing systems operations. The workshop focused on the identification of region-specific monitoring needs and available technologies and methodologies for detection/quantification of harmful algal species and their toxins along the US marine and freshwater coasts. To address this critical environmental issue, several technologies and methodologies have been, or are being, developed to detect and quantify various harmful algae and their associated toxins in coastal marine and freshwater environments. There are many challenges to nationwide adoption of HAB detection as part of a core monitoring infrastructure: the geographic uniqueness of primary algal species of concern around the country, the variety of HAB impacts, and the need for a clear vision of the operational requirements for monitoring the various species. Nonetheless, it was a consensus of the workshop participants that ACT should support the development of HA detection technology performance demonstrations but that these would need to be tuned regionally to algal species and toxins of concern in order to promote the adoption of state of the art technologies into HAR monitoring networks. [PDF contains 36 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]
Resumo:
In the North Pacific Ocean, an ecosystem-based fishery management approach has been adopted. A significant objective of this approach is to reduce interactions between fishery-related activities and protected species. We review management measures developed by the North Pacific Fishery Management Council and the National Marine Fisheries Service to reduce effects of the groundfish fisheries off Alaska on marine mammals and seabirds, while continuing to provide economic opportunities for fishery participants. Direct measures have been taken to mitigate known fishery impacts, and precautionary measures have been taken for species with potential (but no documented) interactions with the groundfish fisheries. Area closures limit disturbance to marine mammals at rookeries and haulouts, protect sensitive benthic habitat, and reduce potential competition for prey resources. Temporal and spatial dispersion of catches reduce the localized impact of fishery removals. Seabird avoidance measures have been implemented through collaboration with fishery participants and have been highly successful in reducing seabird bycatch. Finally, a comprehensive observer monitoring program provides data on the location and extent of bycatch of marine mammals and seabirds. These measures provide managers with the flexibility to adapt to changes in the status of protected species and evolving conditions in the fisheries. This review should be useful to fishery managers as an example of an ecosystem-based approach to protected species management that is adaptive and accounts for multiple objectives.
Resumo:
The National Marine Fisheries Service (NMFS) launched its National Bycatch Strategy (NBS) in March 2003 in response to the continued fisheries management challenge posed by fisheries bycatch. NMFS has several strong mandates for fish and protected species bycatch reduction, including the Magnuson-Stevens Fishery Conservation and Management Act, the Endangered Species Act, and the Marine Mammal Protection Act. Despite efforts to address bycatch during the 1990’s, NMFS was petitioned in 2002 to count, cap, and control bycatch. The NBS initiated as part of NMFS’s response to the petition for rulemaking contained six components: 1) assess bycatch progress, 2) develop an approach to standardized bycatch reporting methodology, 3) develop bycatch implementation plans, 4) undertake education and outreach, 5) develop new international approaches to bycatch, and 6) identify new funding requirements. The definition of bycatch for the purposes of the NBS proved to be a contentious issue for NMFS, but steady progress is being made by the agency and its partners to minimize bycatch to the extent practicable.
Resumo:
Several fisheries in Hawaii are known to have interactions with protected cetaceans, seabirds, marine turtles, or seals. Handline fisheries for bottomfish, tuna, and mackerel scad lose bait and catch to bottlenose dolphins, rough-toothed dolphins, and Hawaiian monk seals. Troll fisheries for billfish lose live bait to bottlenose dolphins, rough-toothed dolphins, albatrosses, and boobies; these fisheries may also lose catch to false killer whales. A longline fishery for tuna and billfish has burgeoned in Hawaii since 1987, resulting in interactions with protected species; marine turtles, seabirds, and monk seals take bait and are known to become hooked, and false killer whales may take catch. Research on deterrents or alternative fishing methods has been limited, and interactions have been reduced primarily through management and regulatory actions. These include area closures and gear requirements. An observer program has also been established for the bottomfish and longline fisheries.
Resumo:
Transfers and introductions of marine species have occurred and are occurring on a worldwide basis, largely in response to perceived needs of expanding aquaculture industries. Greatest interest is in salmon (cage rearing and ocean ranching), shrimp, and bivalve mollusks, although other organisms are being considered. Such movements of animals carry an associated risk of moving pathogens into areas where they did not occur previously, possibly resulting in infections in native species. Many case histories of the effects of introduced pathogens and parasites now exist-enough to suggest that national and international action is necessary. Viral pathogens of shrimp and salmon, as well as protozoan parasites of mollusks and nematode parasites of eels, have entered complex "transfer networks" developed by humans, and have been transported globally with their hosts in several well-documented instances. Examining the records of transfers and introductions of marine species, incomplete as they are, permits the statement of emerging principles-foremost of which is that severe disease outbreaks can result from inadequately controlled or uncontrolled movements of marine animals.
Resumo:
The Ecological Society of America and NOAA's Offices of Habitat Conservation and Protected Resources sponsored a workshop to develop a national marine and estuarine ecosystem classification system. Among the 22 people involved were scientists who had developed various regional classification systems and managers from NOAA and other federal agencies who might ultimately use this system for conservation and management. The objectives were to: (1) review existing global and regional classification systems; (2) develop the framework of a national classification system; and (3) propose a plan to expand the framework into a comprehensive classification system. Although there has been progress in the development of marine classifications in recent years, these have been either regionally focused (e.g., Pacific islands) or restricted to specific habitats (e.g., wetlands; deep seafloor). Participants in the workshop looked for commonalties across existing classification systems and tried to link these using broad scale factors important to ecosystem structure and function.
Resumo:
Bottlenose dolphins (Tursiops truncatus) inhabit estuarine waters near Charleston, South Carolina (SC) feeding, nursing and socializing. While in these waters, dolphins are exposed to multiple direct and indirect threats such as anthropogenic impacts (egs. harassment with boat traffic and entanglements in fishing gear) and environmental degradation. Bottlenose dolphins are protected under the Marine Mammal Protection Act of 1972. Over the years, the percentage of strandings in the estuaries has increased in South Carolina and, specifically, recent stranding data shows an increase in strandings occurring in Charleston, SC near areas of residential development. During the same timeframe, Charleston experienced a shift in human population towards the coastline. These two trends, rise in estuarine dolphin strandings and shift in human population, have raised questions on whether the increase in strandings is a result of more detectable strandings being reported, or a true increase in stranding events. Using GIS, the trends in strandings were compared to residential growth, boat permits, fishing permits, and dock permits in Charleston County from 1994-2009. A simple linear regression analysis was performed to determine if there were any significant relationships between strandings, boat permits, commercial fishing permits, and crabpot permits. The results of this analysis show the stranding trend moves toward Charleston Harbor and adjacent rivers over time which suggests the increase in strandings is related to the strandings becoming more detectable. The statistical analysis shows that the factors that cause human interaction strandings such as boats, commercial fishing, and crabpot line entanglements are not significantly related to strandings further supporting the hypothesis that the increase in strandings are due to increased observations on the water as human coastal population increases and are not a natural phenomenon. This study has local and potentially regional marine spatial planning implications to protect coastal natural resources, such as the bottlenose dolphin, while balancing coastal development.
Resumo:
A critical process in assessing the impact of marine sanctuaries on fish stocks is the movement of fish out into surrounding fished areas. A method is presented for estimating the yearly rate of emigration of animals from a protected (“no-take”) zone. Movement rates for exploited populations are usually inferred from tag-recovery studies, where tagged individuals are released into the sea at known locations and their location of recapture is reported by fishermen. There are three drawbacks, however, with this method of estimating movement rates: 1) if animals are tagged and released into both protected and fished areas, movement rates will be overestimated if the prohibition on recapturing tagged fish later from within the protected area is not made explicit; 2) the times of recapture are random; and 3) an unknown proportion of tagged animals are recaptured but not reported back to researchers. An estimation method is proposed which addresses these three drawbacks of tag-recovery data. An analytic formula and an associated double-hypergeometric likelihood method were derived. These two estimators of emigration rate were applied to tag recoveries from southern rock lobsters (Jasus edwardsii) released into a sanctuary and into its surrounding fished area in South Australia.
Resumo:
Oxidative refolding is one of the key challenges hampering the development of peptide based compounds as therapeutics. The correct refolding for three disulfide peptide like w-Conotoxi n MVIIA is difficult and crucial for biological activity. This work advanced knowledge of chemical and biological for improve oxidative refolding of synthetic w-Conotoxi n MVIIA in base of Conus magus venom. The present study aimed to set up an appropriate and effective protocols for refolding of disulfide-rich w-Conotoxin MVIIA. In this study, the crude peptide was protected with Acm group, according to the right amino acid sequences (Synthesized by Australian Company). The crude peptide was purified by H PLC. To prepare the peptide to refolding, innovative deprotection applied molar ratio (AMR) method was performed based on mercury. Accuracy of deprotection was approved by reverse phase chromatography. The deprotected target peptide (omega-conotoxin) was determined by SDS-PAGE. Then the Oxidative refolding of target peptide was performed in six protocol based on Guanidinium chloride and oxidized and reduced Glutathione. Analgesic effect of refolded peptide was surveyed with formalin test in mice Balb/c. Non neurotoxic effects of target peptides were survey with ICV injection in mice model (C57/BL6). The innovative deprotection protocol performed based on the best ratio of mercury/2-mercaptoethanol adjusted to 1mg/10p1 in 90 minute. The results showed the yield and purity of omega-conotoxin MVIIA as 93 and 95%, respectively. Refolding of 40 mg omega Conotoxin with GSSG and GSH on ratio of 10:1 and 20 mM ammonium acetate showed the best analgesic effect compared with the other methods. The result showed 95.5% yield and 98% purity of omega-conotoxin MVIIA in this refolding method. Related refolding method reduced 85% pain in experimented mice using 7 ng of the peptide. That was 71.5 fold stronger than morphine and 2 times than standard Prialt®. And it was not neurotoxic in mice. In this study, refolding method for omega-conotoxin MVIIA was optimized in the fourth factor including: reducing the time, amount and number of reagent and increase the efficiency. We introduced new method for deprotection of omega-conotoxin MVIIA. Effective, economic and applied refolding and deprotecti on method was performed in this research may al so be applied to similar omega conotoxin peptides.