188 resultados para ORGANISMS
Resumo:
Sediments are an essential component of rivers and of their biological functioning. In addition to their influence on river geomorphology (maintenance of river forms and habitats such as pools and sand bars), sediments also include nutrients, detritus and organic debris of various sizes which interact with the river’s different life forms, including fish. The interaction between sediments and aquatic organisms, directly or indirectly through the effects of sediments on physical habitats, unquestionably influences the biodiversity and productivity of a river. The current report reviews the interactions between sediments and fish in tropical rivers and in the Mekong, and focuses more specifically on a reduction of sediment loads following dam const
Resumo:
Otter trawls are very effective at capturing flatfish, but they can affect the seaf loor ecosystems where they are used. Alaska f latf ish trawlers have very long cables (called sweeps) between doors and net to herd fish into the path of the trawl. These sweeps, which ride on and can disturb the seaf loor, account for most of the area affected by these trawls and hence a large proportion of the potential for damage to seaf loor organisms. We examined modifications to otter trawls, such that disk clusters were installed at 9-m intervals to raise trawl sweeps small distances above the seafloor, greatly reducing the area of direct seafloor contact. A critical consideration was whether flatfish would still be herded effectively by these sweeps. We compared conventional and modified sweeps using a twin trawl system and analyzed the volume and composition of the resulting catches. We tested sweeps raised 5, 7.5, and 10 cm and observed no significant losses of flatfish catch until sweeps were raised 10 cm, and those losses were relatively small (5–10%). No size composition changes were detected in the flatfish catches. Alaska pollock (Theragra chalcogramma) were captured at higher rates with two versions of the modified sweeps. Sonar observations of the sweeps in operation and the seaf loor after passage confirmed that the area of direct seafloor contact was greatly reduced by the modified sweep
Resumo:
Groundfish fisheries in the southeast Bering Sea in Alaska have been constrained in recent years by management measures to protect the endangered Steller sea lion (Eumetopias jubatus). There is concern that the present commercial harvest may produce a localized depletion of groundfish that would affect the foraging success of Steller sea lions or other predators. A three-year field experiment was conducted to determine whether an intensive trawl fishery in the southeast Bering Sea created a localized depletion in the abundance of Pacific cod (Gadus macrocephalus). This experiment produced strongly negative results; no difference was found in the rate of seasonal change in Pacific cod abundance between stations within a regulatory no-trawl zone and stations in an immediately adjacent trawled area. Corollary studies showed that Pacific cod in the study area were highly mobile and indicated that the geographic scale of Pacific cod movement was larger than the spatial scale used as the basis for current no-trawl zones. The idea of localized depletion is strongly dependent on assumed spatial and temporal scales and contains an implicit assumption that there is a closed local population. The scale of movement of target organisms is critical in determining regional effects of fishery removals.
Resumo:
Ghost fishing is the term used to describe the continued capture of fish and other living organisms after a fisherman has lost all control over the gear. Traps may be lost for a variety of reasons including theft, vandalism, abandonment, interactions with other gear, fouling on the bottom (i.e., traps and ropes are caught on rocky substrate), bad weather, and human error (Laist, 1995). Annual trap loss can be as high as 20% to 50% of fished traps in some fisheries (Al-Masroori et al., 2004). Because lost traps can continue to fish for long periods, albeit with decreasing efficiency over time (e.g., Smolowitz, 1978; Breen, 1987, 1990; Guillory, 1993), ghost fishing is a concern in fisheries worldwide.
Resumo:
Long-term time series of zooplankton data provide invaluable information about the fluctuations of species abundance and the stability of marine community structure. These data have demonstrated that environmental variability have a profound effect on zooplankton communities across the Atlantic basin (Beaugrand et al., 2002; Frank et al., 2005; Pershing et al., 2005). The value of these time series increases as they lengthen, but so does the likelihood of changes in sampling or processing methods. Sam-pling zooplankton with nylon nets is highly selective and biased because of mesh selectivity, net avoidance, and damage to fragile organisms. One sampling parameter that must be standardized and closely monitored is the speed of the net through the water column. Tow speed should be as fast as possible to minimize net avoid-ance by the organisms, but not so fast as to damage soft bodied zooplankters or extrude them through the mesh (Tranter et al., 1968; Anderson and Warren, 1991).
Resumo:
Squids of the family Ommastrephidae are a vital part of marine food webs and support major fisheries around the world. They are widely distributed in the open ocean, where they are among the most abundant in number and biomass of nektonic epipelagic organisms. In turn, seven of the 11 genera of this family (Dosidicus, Illex, Martialia, Nototodarus, Ommastrephes, Sthenoteuthis, and Todarodes) are heavily preyed upon by top marine predators, i.e., birds, mammals, and fish, and currently support fisheries in both neritic and oceanic waters (Roper and Sweeney, 1984; Rodhouse, 1997). Their commercial importance has made the large ommastrephids the target of many scientific investigations and their biology is consequently reasonably well-known (Nigmatullin et al., 2001; Zuyev et al., 2002; Bower and Ichii, 2005). In contrast, much less information is available on the biology and ecological role of the smaller, unexploited species of ommastrephids (e.g., Eucleoteuthis, Hyaloteuthis, Ornithoteuthis, and Todaropsis).
Resumo:
Three experiments were performed in an estuarine squid-trawl fishery in New South Wales, Australia, to test modifications to trawl nets. Lateral mesh openings were experimentally increased and physical bycatch reduction devices (BRDs) were placed in codends. These modifications aimed to reduce nontargeted catches of fish, while maintaining catches of the targeted broad squid (Photololigo etheridgei) and bottle squid (Loliolus noctiluca). Compared to conventional codends made with 41-mm diamond mesh, codends made with different posterior circumferences and larger 45-mm mesh had no significant effect on the catches of any species. The best performing configurations involved the installation of BRDs designed to separate organisms according to differences in behavior. In particular, versions of a composite square-mesh panel reduced the total weight of bycatch by up to 71% and there was no significant effect on the catches of squid. The results are discussed in terms of the probable differences in behavior between fish and squid in codends. After this study, a square-mesh panel BRD was voluntarily adopted throughout the fishery.
Resumo:
There is increasing interest in the potential impacts that fishing activities have on megafaunal benthic invertebrates occurring in continental shelf and slope ecosystems. We examined how the structure, size, and high-density aggregations of invertebrates provided structural relief for fishes in continental shelf and slope ecosystems off southern California. We made 112 dives in a submersible at 32−320 m water depth, surveying a variety of habitats from high-relief rock to flat sand and mud. Using quantitative video transect methods, we made 12,360 observations of 15 structure-form-ing invertebrate taxa and 521,898 individuals. We estimated size and incidence of epizoic animals on 9105 sponges, black corals, and gorgonians. Size variation among structure-form-ing invertebrates was significant and 90% of the individuals were <0.5 m high. Less than 1% of the observations of organisms actually sheltering in or located on invertebrates involved fishes. From the analysis of spatial associations between fishes and large invertebrates, six of 108 fish species were found more often adjacent to invertebrate colonies than the number of fish predicted by the fish-density data from transects. This finding indicates that there may be spatial associations that do not necessarily include physical contact with the sponges and corals. However, the median distances between these six fish species and the invertebrates were not particularly small (1.0−5.5 m). Thus, it is likely that these fishes and invertebrates are present together in the same habitats but that there is not necessarily a functional relationship between these groups of organisms. Regardless of their associations with fishes, these invertebrates provide structure and diversity for continental shelf ecosystems off southern California and certainly deserve the attention of scientists undertaking future conservation efforts.
Resumo:
Local communities and local government units are recognized as the primary stakeholders and participants in the management of coral reef resources and the primary beneficiaries of small-scale fishing activities in the nearshore areas of the coastal zone. The issues relating to the management of the coastal zone are multi-faceted and some issues are largely intertwined with national policy and development goals. Thus, national governments have jurisdiction over these nearshore coastal resources to harmonize policies, monitor resource use and provide incentives for sustainable use. However, the natural boundaries of these reef resources, the processes that support reef ecosystems, and the local or national affiliation of the people who benefit from them may transcend the boundaries of the local and national management units. Therefore, efforts to arrest the decline in fish catch and loss of biodiversity for reefs require management interventions and assessment activities to be carried out at varying scales. In Southeast Asia, some aspects of reef and reef resources management — particularly in deciding the allocation of catch among competing fisheries, development of sustainable harvest strategies, use of broodstock for restocking or stock enhancement programs, protection of nursery and spawning areas, designation of systems of marine protected areas, and the identification of representative, adequate and comprehensive areas for biodiversity conservation in the region — may require the definition of larger management units. At the regional level, multi-country initiatives will need to define units for the transboundary management of resources. The use of large marine ecosystems (LMEs) to identify and manage fisheries resources may be a starting point; however, given the relatively sedentary nature of coral reef-dwelling and reef-associated organisms compared with other pelagic and demersal species, meso-scale transboundary units within the LMEs have to be defined. This paper provides suggestions for transboundary management units for coral reef and reef-associated resources in Southeast Asia based on information from genetic structures of model organisms in the region. In addition, specific reef areas are identified, which may be important beyond their national boundaries, as potential sources of recruits.
Resumo:
During the rainy season in extensive river floodplains and deltaic lowlands, floods render the land unavailable for crop production for several months each year. These waters are considerably underutilized in terms of managed aquatic productivity. This raises the opportunity to enclose parts of these floodwater areas to produce a crop of specifically stocked aquatic organisms aside from the naturally occurring ‘wild’ species that are traditionally fished and are not affected by the culture activity, resulting in more high-quality, nutrient-dense food production and enhanced farm income for all stakeholders, notably the poor. The WorldFish Center and its national partners recently tested the concurrent rice-fish culture in the shallower flooded areas and the alternating rice-fish culture in the deep-flooded areas of Bangladesh and Viet Nam through a community-based management system. Results indicate that community-based fish culture in rice fields can increase fish production by about 600 kg/ha/year in shallow flooded areas and up to 1.5 t/ha/year in deep-flooded areas, without a reduction in the rice yield or wild fish catch.
Resumo:
Assessment and management of risk is needed for sustainable use of genetically modified aquatic organisms (aquatic GMOs). A computer software package for safely conducting research with genetically modified fish and shellfish is described. By answering a series of questions about the organism and the accessible aquatic ecosystem, a researcher or oversight authority can either identify specific risks or conclude that there is a specific reason for safety of the experiment. Risk assessment protocols with examples involving transgenic coho salmon, triploid grass carp and hybrid tilapia are described. In case a specific risk is identified, the user is led to consider risk management measures, involving culture methods, facilities design and operations management, to minimize the risk. Key features of the software are its user-friendly organization; easy access to explanatory text, literature citations and glossary; and automated completion of a worksheet. Documented completion of the Performance Standards can facilitate approval of a well designed experiment by oversight authorities.
Resumo:
This paper examines the practice and products of biotechnology from the viewpoint of bioethics, looking at four cases where aquatic biotechnology and bioethics intersect. The four cases applied are: Case 1. Genetic modification of animals; Case 2. Genetically Modified Organisms (GMO) as food; Case 3. Environmental applications of GMOs; Case 4. Intellectual property production for GMOs and DNA sequences.
Resumo:
Phosphorus is an essential element for living organisms and exists in waterbodies as dissolved and particulate forms. Phosphorus is required for optimum growth, feed efficiency, bone development and maintenance of acid-base regulation in fish. The presence of high concentration of phosphates in water may indicate presence of pollution as it may accelerate plant growth and disrupt the aquatic ecosystem thereby benefiting certain species and altering species diversity in affected areas. Eutrophication of waterbodies is often correlated with the phosphorus loading into the environment and aquaculture has been identified as one of the sources of phosphorus pollution. Details of the impacts of eutrophication is given in Bernhardt (1981). Phosphorus must be provided in fish feed because of its low concentration in water. Studies made in Europe and Northern America have revealed a phosphorus surplus in most commercial feeds which is above actual requirements; or is supplied in a form which is unavailable to the fish. Surplus phosphorus is excreted, while unavailable phosphorus is passed out in the feces. Discharge of phosphorus from fish farms and hatchery effluents have caused phosphorus pollution in Nordic countries, North America and Europe. This article examines the path of phosphorus pollution, quantification/prediction of phosphorus load from aquaculture and remedial measures.
Resumo:
Preservation of marine biodiversity deserves serious consideration as almost 65% of the earth's organisms (excluding insects) are marine. There is little knowledge at present on the status of marine biodiversity. However, the seas are an important source of protein for human consumption and genetic diversity is a key factor in ecosystem functioning, stability and resilience. Overfishing and destructive practices may have unalterable impact on marine biodiversity. This paper discusses measures that can be adopted to protect the most productive areas of the marine ecosystem.
Resumo:
This paper details some of the problems encountered in culturing black tiger shrimp (Penaeus monodon) the semi-intensive way in India, which include aquatic macrophytes; invasions by molluscs, jellyfish and frogs; predators; fouling organisms; and others.