128 resultados para Cadastral changes
Resumo:
This study was carried out to seasonal determination of some morphological characteristics, Seasonal fecundity, Seasonal fluctuations of vertebrate-type steroids and seasonal analysis of gonadal histology in both female and male sexes of freshwater crayfish (Astacus leptodactylus Eschscholtz 1823) in the area of Aras dam Lake. Crayfish were collected respectively in June, August, November (2011) and January (2012). The average length and weight of male crayfish was higher than that of females. %GSI of females fluctuated within an extended range (between 0.6 and 13.5% from June to January). Both of synchronous and asynchronous ovaries were seen in August sampled ovaries; however asynchronous form was higher than another. The annual reproductive cycle of male A. leptodactylus was surveyed by study on the seasonal changes of the external appearance of the testes and vasa deferentia, fluctuations in the gonadosomatic index (GSI%) and the histological analysis of the male reproductive system. Based on the histological differentiation of testis, spermatogenisis devided to 5 separated stages. The findings suggested asynchronous testis in the species A.leptodactylus. The presence of primary spermatophore layer may help keeping spermatozoa alive while the secondary spermatophore layer may produces spermatophore or synthesize of acellular material which forms spermatophre. Pleopodal fecundity was 37.3%lower than ovarian fecundity observed. The significantly higher number of eggs attached to 3rd and 4th pairs of pleopods. The egg number and gonadosomatic index increased with female size while egg weight and egg diameter didn’t increase with female size. Hemolymph levels of 17β-estradiol and progesterone followed a similar fluctuation pattern with % GSI in females, while testosterone didn’t follow the mentioned pattern. The testis of November sampled crayfish presented significantly higher gonadosomatic (%GSI) index (P < 0.05).The most observed gonadosomaticindices were 13.5%(forfemales) and 1.21% (for males, in autumn. Althogh the lowest GSI was (0.50%) formales in spring and (0.26%0 for spent females in January. Testosterone which followed a similar pattern with %GSI in males increased remarkably in November. 17β-estradiol increased strictly in January. The strictly enhancement of the three estroid hormones in January in both male and female sexes could bedue totheir stimulating role in in spermatophre and egg lying in the mating season (In January). Most of the ovaries followed the asynchoronous growth pattern. Also the testes presented asynchoronous growth pattern in autumn.
Resumo:
Seasonal sampling from 40 immature Caspian salmon were performed in summer, autumn, winter and spring. The maximum ranges of RBC counts, Hct, Hb, WBC count and clotting times were observed in spring, summer, spring, spring and winter, respectively. The minimum amounts of these factors were counted in summer, winter, winter, winter and winter, respectively. Blood Samples were taken from healthy smolt, immature and adult Caspian salmon in spawning time. Hematological determinations and biochemical serum analysis were performed in 101 fish in the three samples. The ranges of hematological values for sample mean were counted. Red blood cell counts were 866600 mm3 and 1259400 mm3 in smolt and adult respectively. Hematocrit was 48.39% in smolt and 44.29% in adult. Hemoglobin was 8.85 gr/dl in smolt and 10.91 gr/dl in adult. White blood cell count was 8781.58 mm3 in smolt and 5217.55 mm3 in adult and mean were differential of WBC, Lymphocyte 90.57%in smolt and73.22% in adult. Neutrophil was 5.12% in smolt and 16.92% in adult, Monocyte were 1.27% in smolt and 4.24% in adult, Clotting time was 282.34 Seconds in smolt and 291.47 seconds in adult MCV, MCH and MCHC also meagered in smolt and adult. Biochemical parameter in immature and mature Caspian salmon meagered .Glucose concentration was 2.97 mmol.l- in immature and 1.99 mmol.l- in mature .Cholesterol concentration was 4.26 mmol.l- in immature and 7.06 mmol.l- in mature. Triglyceride amount was 2.35 mmol.l- in immature and 2.47 mmol.l- in mature and Calcium was 2.47 in immature and 2.61 mmol.l- in mature. An in situ study was made on erythrocytic isoantigens and hetero-antigen and their corresponding iso-and hetero-antibodies of sera by means of hemoagglutination tests on the blood sample, of 450 immature and 50 mature Caspian salmon. The absence of erythrocyte iso-antigens and hetero-antigen and their corresponding iso-and hetero-antibodies were shown by the experimental. It could be indicated an intra-specific variation and differences in species for kelardasht hatchery.
Resumo:
The occurrence of diseases is a significant setback for successful aquafarming. One of the common fish bacterial disease syndromes, Edwardsiellosis is caused by Edwardsiella tarda, a gram-negative, rod shaped bacterium associated with several diseases of marine and fresh water fish. In this study, an attempt was made to observe and analyze the onset of clinical symptoms and certain haematological parameters in Koi Carp, Cyprinus carpio L., following artificial infection with Edwardsiella tarda. The disease progress was observed and the clinical symptoms were monitored over a period of 15 days following infection. Fish were sampled at three day intervals to analyse the haematological parameters: total erythrocyte counts (RBC), total leucocyte counts (WBC), haemoglobin content and differential leucocyte count. Clinical symptoms observed included: erratic swimming behaviour, loss of appetite, haemorrhages, dropsy and exophthalmia. There was a significant decrease in the total RBC and haemoglobin levels by the 3rd and 6th day post infection, and an increase thereafter. WBC counts were higher in all infected groups in comparison to the control group. A significant increase in the number of neutrophils was found in the infected group up to the 9th day and a decrease thereafter. The lymphocyte number was significantly less up to the 12th day while the monocyte counts were significantly higher up to the 12th day post infection. The results showed that the bacterium, E. tarda, is pathogenic to Koi Carp. The hematological changes and clinical signs in infected fish reported in this paper will be helpful in the identification and the control of this infection.
Resumo:
The main aim of this research was to identify fatty acids composition of Caspian sea of White fish Rutilus frisi kutum tissue and their changes during one year cold storage (-18Ċ).The secondary aim was to determine the changes of moisture, ash, protein, fat, and to investigate the effects of storage time on peroxide, TBAi, FFA, and extractability of myofibrillar proteins of the fish tissue during one year cold storage (-18 Ċ). 10 samples of (Rutilus frisi kutum) were randomly collected from Anzali landings. The samples were frozen at -30 Ċ and kept in cold storage at -18Ċ for one year. According to time table, the samples were examined. The results showed that 27 fatty acids were identified. The unsaturated fatty acids (UFA) and saturated fatty acids (SFA) were 74/09 and 21/63 %, respectively, in fresh tissue. So that DHA (C22:6) oleic acid (C18:1c) had high amounts (15/07 ,20/57 ) among the UFA and palmitic acid (C16:0) was the most (13/09 %) among the SFA. The effects of freezing and cold storage on fish tissue showed that UFA and SFA contents have reached to 58/79 and 22/17 %, respectively, at the end of cold storage. It indicated that these compound change to each other during frozen storage. Also ω-3 and ω-6 series of fatty acids was 24/22 and 15/56% in fresh tissue, but their contents decreased to 8/68 and 5/11% at the end of period. Among the fatty acids C22:6, C18:1c and C16:0 had the most changes. The changes of fatty acids were significantly at 95% level expected for C18:0. Results showed that moisture, ash, protein, and fat contents were 75/9±0/03, 1/28±0/012, 21/8±0/2, and 4/1±0/01 % respectively, in fresh tissue. The moisture, ash, protein, and fat contents were 72/3±0/04, 1/83±0/05, 1/91±0/01 and 19/9±0/01 % respectively, at the end of storage period. Lipid damage was measured on the basis of free fatty acids (FFA), peroxide value (PV), and Thiobarbituric acid index (TBA-i). PV, TBARS and FFA concentration of frozen Caspian Sea white fish stored at -18 Ċ the temporal variation of these three variables were statistically significant (p<0.001). Results of White fish myofibrillar proteins showed aggregation of bound reduced for stored at 12 months. SDS-PAGE analysis revealed that, the intensity of the myosin heavy chain and actin bound was reduced with increasing storage time. SDS-PAGE patterns showed that myosin heavy chain was much more susceptible to hydrolysis than actin. Key words: Rutilus frisi kutum, frozen storage, ω-3, ω-6, protein myofibrillar
Resumo:
Most of the earth's ecosystems are experiencing slight to catastrophic losses of biodiversity, caused by habitat destruction, alien species introduction, climate change and pollution (Wilcove et al., 1998). These human effects have led to the extinction of native fish species, the collapse of their populations and the loss of ecological integrity and ecosystem functioning (Ogutu-Ohwayo & Hecky, 1991; Witte et al. , 1992a; Mills et al., 1994; Vitousek et al., 1996). Food webs are macro-descriptors of community feeding interactions that can be used to map the flow of materials and nutrients in ecosystems (Jepsen & Winemiller, 2002). Comparative food web studies have been used to address theoretical questions such as 'does greater trophic connectivity increase stability?' (Cohen et al., 1990), and 'does the number of trophic levels increase with productivity?' (Briand & Cohen, 1987). Answers to such questions have obvious applications for natural resources management. From a multi-species fisheries standpoint, there is a need to understand consumer-resource dynamics within complex trophic networks.
Resumo:
Lake Victoria is the second largest lake in the world (69000km2) by surface area, but it is the shallowest (69m maximum depth) of the African Great Lakes. It is situated across the equator at an altitude of 1240m and lies in a shallow basin between two uplifted ridges of the eastern and western rift valleys (Beadle 1974). Despite their tropical locations, African lakes exhibit considerable seasonality related to the alteration of warm, wet and cool, dry seasons and the accompanying changes in lucustrine stratification and mixing (Tailing, 1965; 1966; Melack 1979; Hecky& Fee 1981; Hecky& Kling,1981; 1987; Bootsma 1993; Mugidde 1992; 1993). Phytoplankton productivity, biomass and species composition change seasonally in response to variations in light environment and nutrient availability which accompany changes in mixed layer depth and erosion or stabilization of the metalimnion / hypolimnion (Spigel & Coulter 1996; Hecky et al., 1991; Tailing 1987). Over longer, millennial time scales, the phytoplankton communities of the African Great Lakes have responded to variability in the EastAfrican climate (Johnson 1996; Haberyan& Hecky, 1986) which also alters the same ecological factors (Kilham et al., 1986). Recently, over the last few decades, changes in external and or internal factors in Lake Victoria and its basin have had a profound inlluence on the planktic community of this lake (Hecky, 1993; Lipiatou et al., 1996). The lake has experienced 2-10x increases in chlorophyll and 2x increase in primary productivity since Tailing's observations in the early 1960s (Mugidde 1992, 1993). In addition to observed changes in the lake nutrient chemistry (Hecky & Mungoma, 1990; Hecky & Bugenyi 1992; Hecky 1993; Bootsma & Hecky 1993), the deep waters previouslyoxygenated to the sediment surface through most of the year are now regularly anoxic(Hecky et al., 1994).
Resumo:
There have been considerable changes in fish species composition in Lakes victoria, Kyoga and Nabugabo since the Nile perch were introduced. Populations of most of the native species have declined and many species may have become extinct. The original decline in the fish stocks was due to overfishing but the recent and more drastic decline has been attributed to predation by the Nile perch. Nile perch feeds on invertebrates changing to a piscivorous diet with size. Haplochromine cichlids, which were the most abundant fish in Lakes Victoria just before the Nile perch populations started increasing rapidly have been depleted. As more suitable types of prey were depleted in the new habi tats, Nile perch switched to other prey types to the extent of feeding even on its own young. There are, fears that the Nile perch will overshoot its food supply, resulting in a reduction of its own population and subsequently a collapse in the fishery (FAD 1985).
Resumo:
Unlike Lake Victoria, the fisheries of Lake George have undergone gradual changes in the size and proportion of the major commercial fish species, the Nile tilapia (Oreochromis niloticus: cichlidae) in the last 40 years (1950-1989). The size decreased from an average weight of 900g in 1950 to 430g in 1989 while percentage contribution in commercial catches during the same period declined from 92% to 36%. The over all annual commercial catches though showed a steady increase from the period 1950 when the fishery was opened to intensive and controlled exploitation, consistently high catches were observed in the 1960s and 1970s followed by a general decline in the early 1980s to amore or less stable fishery in the late 1980s. These changes are attributed to increased fishing pressure especially on the nil tilapia and to increased use of smaller gill net mesh sizes lower than the recommended 127mm mesh. The changes in gill net mesh have brought O. leucostictus, acichlid, into commercial catches confirming that the 88.9mm mesh size nets are used by the commercial fishermen to harvest smaller fish species. The commercial catches are presently dominated by the piscivorous fishes,(over 60%) whose contribution was less than 10% during initial exploitation of the virgin fishery in 1950.The piscivorous fish are mainly caught using hooks and lines. The entire fishery is believed to be exploited close to the maximum. The above trends serve to show the impact of exploitation on fish species diversity. Quantitive and qualitative changes of the major fish species on lake George are due to exploitation pressure unlike Lake Victoria where it is a combination of both exploitations and impact of fish introductions. There has been no fish introduction in Lake George.