170 resultados para Botany -- Juvenile literature
Resumo:
The transition between freshwater and marine environments is associated with high mortality for juvenile anadromous salmonids, yet little is known about this critical period in many large rivers. To address this deficiency, we investigated the estuarine ecology of juvenile salmonids and their associated fish assemblage in open-water habitats of the lower Columbia River estuary during spring of 2007–10. For coho (Oncorhynchus kisutch), sockeye (O. nerka), chum (O. keta), and yearling (age 1.0) Chinook (O. tshawytscha) salmon, and steelhead (O. mykiss), we observed a consistent seasonal pattern characterized by extremely low abundances in mid-April, maximum abundances in May, and near absence by late June. Subyearling (age 0.0) Chinook salmon were most abundant in late June. Although we observed interannual variation in the presence, abundance, and size of juvenile salmonids, no single year was exceptional across all species-and-age classes. We estimated that >90% of juvenile Chinook and coho salmon and steelhead were of hatchery origin, a rate higher than previously reported. In contrast to juvenile salmonids, the abundance and composition of the greater estuarine fish assemblage, of which juvenile salmon were minor members, were extremely variable and likely responding to dynamic physical conditions in the estuary. Comparisons with studies conducted 3 decades earlier suggest striking changes in the estuarine fish assemblage—changes that have unknown but potentially important consequences for juvenile salmon in the Columbia River estuary.
Resumo:
The purpose of this study was to validate aging results of juvenile Shortfin Mako (Isurus oxyrinchus) by vertebral band counts. Vertebrae of 29 juvenile Shortfin Mako marked with oxytetracycline (OTC) were obtained from tag-recapture activities to determine centrum growth-band deposition. Tagging occurred off southern California from 1996 to 2010, and time at liberty of the 29 sharks ranged from 4 months to 4.4 years (mean=1.3 years). Growth information also was obtained from length-frequency modal analyses (MULTIFAN and MIXDIST) by using a 29-year data set of commercial and research catch data, in addition to a tag-recapture growth model (e.g, the GROTAG model). For vertebrae samples used for age validation, shark size at time of release ranged from 79 to 142 cm fork length (FL) and from 98 to 200 cm FL at recapture. Results from band counts of vertebrae distal to OTC marks indicate 2 band pairs (2 translucent and 2 opaque) are formed each year for Shortfin Mako of the size range examined. Length-frequency analyses identified 3 age class modes. Growth rate estimates from 26.5 to 35.5 cm/year were calculated for the first age-class mode (85 cm FL) and from 22.4 to 28.6 cm/year for the second age-class mode (130 cm FL). Results from the tag-recapture growth model revealed fast growth during time at liberty for tagged fish of the 2 youngest age classes. Collectively, these methods suggest rapid growth of juvenile Shortfin Mako in the southern California study area and indicate biannual deposition of growth bands in vertebrae for the first 5 years.
Resumo:
A review of the significant contributions in the peer-reviewed literature indicates that the discarding of marine fish known as bycatch remains one of the most significant problem facing fisheries managers. Bycatch has negative affects on marine biodiversity, is ripe with ethical and moral issues surrounding the waste of life from increased juvenile fish mortality, hinders commercial profitability and recreational satisfaction, increases management costs, and results in socio-cultural problems and conflicts. While appearing to have a simple conservation engineering solution, reducing or eliminating bycatch in marine fishing operations given the presently existing regulated open access management environment is demonstrated to actually be so complex that its effects can appear to be counter-intuitive. An ecosystem simulation model that explicitly incorporates the human and biological dimensions is used to evaluate proposed bycatch reduction regulations for two fishing fleets exploiting three out of seven species of fish, each with ten cohorts, in two resource areas. One of the fishing fleets is divided into two components representing commercial fishermen and recreational anglers. The seven fish species represent predator, prey, and competitor behaviors and one stock is treated as an endangered species. The results displayed in a series of figures demonstrate the potential unintended effects of simplistic management approaches and the need for a holistic and comprehensive approach to bycatch management. That is, an ecosystem model that explicitly incorporates socio-cultural and biophysical attributes into a common framework allows the magnitude and direction of behavioral responses to be predicted based on changes in governance or biophysical constraints to determine if management goals and objectives have been obtained through the use of quantitative metrics.
Resumo:
Stichaeidae, commonly referred to as pricklebacks, are intertidal and subtidal fishes primarily of the North Pacific Ocean. Broad distribution in relatively inaccessible and undersampled habitats has contributed to a general lack of information about this family. In this study, descriptions of early life history stages are presented for 25 species representing 18 genera of stichaeid fishes from the northeastern Pacific Ocean, Bering Sea, and Arctic Ocean Basin. Six of these species also occur in the North Atlantic Ocean. Larval stages of 16 species are described for the first time. Additional information or illustrations intended to augment previous descriptions are provided for nine species. For most taxa, we present adult and larval distributions, descriptions of morphometric, meristic, and pigmentation characters, and species comparisons, and we provide illustrations for preflexion through postflexion or transformation stages. New counts of meristic features are reported for several species.
Resumo:
The first dedicated collections of deep-water (>80 m) sponges from the central Aleutian Islands revealed a rich fauna including 28 novel species and geographical range extensions for 53 others. Based on these collections and the published literature, we now confirm the presence of 125 species (or subspecies)of deep-water sponges in the Aleutian Islands. Clearly the deep-water sponge fauna of the Aleutian Islands is extraordinarily rich and largely understudied. Submersible observations revealed that sponges, rather than deep-water corals, are the dominant feature shaping benthic habitats in the region and that they provide important refuge habitat for many species of fish and invertebrates including juvenile rockfish (Sebastes spp.) and king crabs (Lithodes sp). Examination of video footage collected along 127 km of the seafloor further indicate that there are likely hundreds of species still uncollected from the region, and many unknown to science. Furthermore, sponges are extremely fragile and easily damaged by contact with fishing gear. High rates of fishery bycatch clearly indicate a strong interaction between existing fisheries and sponge habitat. Bycatch in fisheries and fisheries-independent surveys can be a major source of information on the location of the sponge fauna, but current monitoring programs are greatly hampered by the inability of deck personnel to identify bycatch. This guide contains detailed species descriptions for 112 sponges collected in Alaska, principally in the central Aleutian Islands. It addresses bycatch identification challenges by providing fisheries observers and scientists with the information necessary to adequately identify sponge fauna. Using that identification data, areas of high abundance can be mapped and the locations of indicator species of vulnerable marine ecosystems can be determined. The guide is also designed for use by scientists making observations of the fauna in situ with submersibles, including remotely operated vehicles and autonomous underwater vehicles.
Resumo:
A survey of the larval and juvenile fishes associated with the pelagic Sargassum habitat in the South Atlantic Bight and adjacent western Atlantic Ocean was conducted from July 1991 through March 1993. Fishes representing 104 taxonomic categories were identified, including reef fishes, coastal demersal, coastal pelagic, epipelagic and mesopelagic species. The most important families were Balistidae and Carangidae, each represented by 15 species. Species composition, species diversity and abundance varied both seasonally and regionally. Diversity was highest during spring through fall over the outer continental shelf and in the Gulf Stream. Abundance decreased from spring through winter and from the continental shelf into offshore waters. The numbers of fishes and fish biomass were found to be positively correlated with the wet weight of algae in most cases examined. The results of this study will be useful to fisheries managers assessing the potential impacts of commercial Sargassum harvesting in the region.
Resumo:
Through research aimed at understanding the coastal environment, surveys designed to help manage the resource, and national programs to monitor environmental condition, we see a picture of a dynamic ecosystem that is Cape Romain National Wildlife Refuge (CRNWR). Currently, there are efforts underway to protect threatened species; monitor fish populations; and quantify the biological, physical, and chemical characteristics of this environment. The potential impacts to this system are just now being understood as ecological responses to human modification are observed and explained. As a starting point, this document compiles existing information about Cape Romain NWR in five topic areas and addresses the potential impacts to the Refuge. This review is intended to serve as a stepping stone to developing a research agenda in support of management of the Refuge. There are various sources of information on which to build a framework for monitoring conditions and detecting change to this environment. For instance, information on basic ecological function in estuarine environments has evolved over several decades. Long-term surveys of Southeast fisheries exist, as well as shellfish and sediment contaminants data from estuaries. Environmental monitoring and biological surveys at the Refuge continue. Recently, studies that examine the impacts to similar coastal habitats have been undertaken. This document puts past studies and ongoing work in context for Refuge managers and researchers. This report recommends that the next phase of this resource characterization focus on: • compiling relevant tabular and spatial data, as identified here, into a Geographic Information System (GIS) framework • assessing the abundance and diversity of fisheries utilizing CRNWR • delineating additional data layers, such as intertidal habitats and subtidal clam beds, from low-level aerial photography, hard copy maps, and other sources • continued inventories of plant and animal species dependent on the Refuge • monitoring physical and chemical environmental parameters using the methodology employed at National Estuarine Research Reserve System (NERRS) and other coastal sites, where appropriate • further definition of the potential risks to the Refuge and preparing responses to likely impacts.