168 resultados para post-larval
Resumo:
Prior to Pietsch’s (1993) revision of the genus Triglops, identification of their larvae was difficult; six species co-occur in the eastern North Pacific Ocean and Bering Sea and three co-occur in the western North Atlantic Ocean. We examined larvae from collections of the Alaska Fisheries Science Center and Atlantic Reference Centre and used updated meristic data, pigment patterns, and morphological characters to identify larvae of Triglops forficatus, T. macellus, T. murrayi, T. nybelini, T. pingeli, and T. scepticus; larvae of T. metopias, T. dorothy, T. jordani, and T. xenostethus have yet to be identified and are thus not included in this paper. Larval Triglops are characterized by a high myomere count (42–54), heavy dorsolateral pigmentation on the gut, and a pointed snout. Among species co-occurring in the eastern North Pacific Ocean, T. forficatus, T. macellus, and T. pingeli larvae are distinguished from each other by meristic counts and presence or absence of a series of postanal ventral melanophores. Triglops scepticus is differentiated from other eastern North Pacific Ocean larvae by having 0–3 postanal ventral melanophores, a large eye, and a large body depth. Among species co-occurring in the western North Atlantic Ocean, T. murrayi and T. pingeli larvae are distinguished from each other by meristic counts (vertebrae, dorsal-fin rays, and anal-fin rays once formed), number of postanal ventral melanophores, and first appearance and size of head spines. Triglops nybelini is distinguished from T. murrayi and T. pingeli by a large eye, pigment on the lateral line and dorsal midline in flexion larvae, and a greater number of dorsal-fin rays and pectoral-fin rays once formed.
Resumo:
A survey of the larval and juvenile fishes associated with the pelagic Sargassum habitat in the South Atlantic Bight and adjacent western Atlantic Ocean was conducted from July 1991 through March 1993. Fishes representing 104 taxonomic categories were identified, including reef fishes, coastal demersal, coastal pelagic, epipelagic and mesopelagic species. The most important families were Balistidae and Carangidae, each represented by 15 species. Species composition, species diversity and abundance varied both seasonally and regionally. Diversity was highest during spring through fall over the outer continental shelf and in the Gulf Stream. Abundance decreased from spring through winter and from the continental shelf into offshore waters. The numbers of fishes and fish biomass were found to be positively correlated with the wet weight of algae in most cases examined. The results of this study will be useful to fisheries managers assessing the potential impacts of commercial Sargassum harvesting in the region.
Resumo:
Serial, cyclonic, mesoscale eddies arise just north of the Charleston Bump, a topographical rise on the continental slope and Blake Plateau, and characterize the U.S. outer shelf and upper slope in the region of the Charleston Gyre. This region was transected during the winters of 2000, 2001, and 2002, and hydrographic data and larval fishes were collected. The hydrodynamics of the cyclonic eddies of the Charleston Gyre shape the distribution of larval fishes by mixing larvae from the outer continental shelf and the Gulf Stream and entraining them into the eddy circulation at the peripheral margins, the wrap-around filaments. Over all years and transects (those that intercepted eddies and those that did not), chlorophyll a concentrations, zooplankton displacement volumes, and larval fish concentrations were positively correlated. Chlorophyll a concentrations were highest in filaments that wrapped around eddies, and zooplankton displacement volumes were highest in the continental shelf–Gulf Stream–frontal mix. Overall, the concentration of all larval fishes declined from inshore to offshore with highest concentrations occurring over the outer shelf. Collections produced larvae from 91 fish families representing continental shelf and oceanic species. The larvae of shelf-spawned fishes—Atlantic Menhaden Brevoortia tyrannus, Round Herring Etrumeus teres, Spot Leiostomus xanthurus, and Atlantic Croaker Micropogonias undulatus—were most concentrated over the outer shelf and in the continental shelf–Gulf Stream–frontal mix. The larvae of ocean-spawned fishes—lanternfishes, bristlemouths, and lightfishes—were more evenly dispersed in low concentrations across the outer shelf and upper slope, the highest typically in the Gulf Stream and Sargasso Sea, except for lightfishes that were highest in the continental shelf–Gulf Stream–frontal mix. Detrended correspondence analysis rendered groups of larval fishes that corresponded with a gradient between the continental shelf and Gulf Stream and Sargasso Sea. Eddies propagate northeastward with a residence time on the outer shelf and upper slope of ∼1 month, the same duration as the larval period of most fishes. The pelagic habitat afforded by eddies and fronts of the Charleston Gyre region can be exploited as nursery areas for feeding and growth of larval fishes within the southeastern Atlantic continental shelf ecosystem of the U.S. Eddies, and the nursery habitat they provide, translocate larvae northeastward.
Resumo:
The Charleston Gyre region is characterized by continuous series of cyclonic eddies that propagate northeastwards before decaying or coalescing with the Gulf Stream south of Cape Hatteras, NC, USA. Over 5 d, chlorophyll-a concentration, zooplankton displacement volume, and zooplankton composition and abundance changed as the eddy moved to the northeast. Surface chlorophyll-a concentration decreased, and zooplankton displacement remained unchanged as the eddy propagated. Zooplankton taxa known to be important dietary constituents of larval fish increased in concentration as the eddy propagated. The concurrent decrease in chlorophyll-a concentration and static zooplankton displacement volume can be explained by initial stimulation of chlorophyll-a concentration by upwelling and nutrient enrichment near the eddy core and to possible grazing as zooplankton with short generation times and large clutch sizes increased in concentration. The zooplankton community did not change significantly within the 5 d that the eddy was tracked, and there was no indication of succession. Mesoscale eddies of the region are dynamic habitats as eddies propagate northeastwards at varying speeds within monthly periods. The abundance of zooplankton important to the diets of larval fish indicates that the region can provide important pelagic nursery habitat for larval fish off the southeast coast of the United States. A month of feeding and growth is more than half the larval duration of most fish spawned over the continental shelf of the southeastern United States in winter.
Resumo:
Larval development of the sidestriped shrimp (Pandalopsis dispar) is described from larvae reared in the laboratory. The species has five zoeal stages and one postlarval stage. Complete larval morphological characteristics of the species are described and compared with those of related species of the genus. The number of setae on the margin of the telson in the first and second stages is variable: 11+12, 12+12, or 11+11. Of these, 11+12 pairs are most common. The present study confirms that what was termed the fifth stage in the original study done by Berkeley in 1930 was the sixth stage and that the fifth stage in the Berkeley’s study is comparable to the sixth stage that is described in the present study. The sixth stage has a segmented inner flagellum of the antennule and fully developed pleopods with setae. The ability to distinguish larval stages of P. dispar from larval stages of other plankton can be important for studies of the effect of climate change on marine communities in the Northeast Pacific and for marine resource management strategies.
Resumo:
Life history aspects of larval and, mainly, juvenile spotted seatrout (Cynoscion nebulosus) were studied in Florida Bay, Everglades National Park, Florida. Collections were made in 1994−97, although the majority of juveniles were collected in 1995. The main objective was to obtain life history data to eventually develop a spatially explicit model and provide baseline data to understand how Everglades restoration plans (i.e. increased freshwater flows) could influence spotted seatrout vital rates. Growth of larvae and juveniles (<80 mm SL) was best described by the equation loge standard length = –1.31 + 1.2162 (loge age). Growth in length of juveniles (12–80 mm SL) was best described by the equation standard length = –7.50 + 0.8417 (age). Growth in wet weight of juveniles (15–69 mm SL) was best described by the equation loge wet-weight = –4.44 + 0.0748 (age). There were no significant differences in juvenile growth in length of spotted seatrout in 1995 between three geographical subdivisions of Florida Bay: central, western, and waters adjacent to the Gulf of Mexico. We found a significant difference in wet-weight for one of six cohorts categorized by month of hatchdate in 1995, and a significant difference in length for another cohort. Juveniles (i.e. survivors) used to calculate weekly hatchdate distributions during 1995 had estimated spawning times that were cyclical and protracted, and there was no correlation between spawning and moon phase. Temperature influenced otolith increment widths during certain growth periods in 1995. There was no evidence of a relationship between otolith growth rate and temperature for the first 21 increments. For increments 22–60, otolith growth rates decreased with increasing age and the extent of the decrease depended strongly in a quadratic fashion on the temperature to which the fish was exposed. For temperatures at the lower and higher range, increment growth rates were highest. We suggest that this quadratic relationship might be influenced by an environmental factor other than temperature. There was insufficient information to obtain reliable inferences on the relationship of increment growth rate to salinity.
Resumo:
A developmental series of larval and pelagic juvenile pygmy rockfish (Sebastes wilsoni) from central California is illustrated and described. Sebastes wilsoni is a non- commercially, but ecologically, important rockfish, and the ability to differentiate its young stages will aid researchers in population abundance studies. Pigment patterns, meristic characters, morphometric measurements, and head spination were recorded from specimens that ranged from 8.1 to 34.4 mm in standard length. Larvae were identified initially by meristic characters and the absence of ventral and lateral midline pigment. Pelagic juveniles developed a prominent pigment pattern of three body bars that did not extend to the ventral surface. Species identification was confirmed subsequently by using mitochondrial sequence data of four representative specimens of various sizes. As determined from the examination of otoliths, the growth rate of larval and pelagic juvenile pygmy rockfish was 0.28 mm/day, which is relatively slow in comparison to the growth rate of other species of Sebastes. These data will aid researchers in determining species abundance.
Resumo:
The population structure of walleye pollock (Theragra chalcogramma) in the northeastern Pacific Ocean remains unknown. We examined elemental signatures in the otoliths of larval and juvenile pollock from locations in the Bering Sea and Gulf of Alaska to determine if there were significant geographic variations in otolith composition that may be used as natural tags of population affinities. Otoliths were assayed by using both electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (ICP-MS). Elements measured at the nucleus of otoliths by EPMA and laser ablation ICP-MS differed significantly among locations. However, geographic groupings identified by a multivariate statistical approach from EPMA and ICP-MS were dissimilar, indicating that the elements assayed by each technique were controlled by separate depositional processes within the endolymph. Elemental profiles across the pollock otoliths were generally consistent at distances up to 100 μm from the nucleus. At distances beyond 100 μm, profiles varied significantly but were remarkably consistent among individuals collected at each location. These data may indicate that larvae from various spawning locations are encountering water masses with differing physicochemical properties through their larval lives, and at approximately the same time. Although our results are promising, we require a better understanding of the mechanisms controlling otolith chemistry before it will be possible to reconstruct dispersal pathways of larval pollock based on probe-based analyses of otolith geochemistry. Elemental signatures in otoliths of pollock may allow for the delineation of fine-scale population structure in pollock that has yet to be consistently revealed by using population genetic approaches.
Resumo:
Larval and juvenile development of finescale menhaden (Brevoortia gunteri) is described for the first time by using wild-caught individuals from Nueces Bay, Texas, and is compared with larval and juvenile development of co-occurring gulf menhaden (B. patronus). Meristics, morphometrics, and pigmentation patterns were examined as development proceeded. An illustrated series of finescale menhaden is presented to show changes that occurred during development. For finescale menhaden, transformation to the juvenile stage was completed by 17−19 mm standard length (SL). By contrast, transformation to the juvenile stage for gulf menhaden was not complete until 23−25 mm SL. Characteristics useful for separating larval and juvenile finescale menhaden from gulf menhaden included 1) the presence or absence of pigment at the base of the insertion of the pelvic fins; 2) the standard length at which medial predorsal pigment occurs; 3) differences in the number of dorsal fin ray elements; and, 4) the number of vertebrae.
Resumo:
An assessment of the total biomass of shortbelly rockfish (Sebastes jordani) off the central California coast is presented that is based on a spatially extensive but temporally restricted ichthyoplankton survey conducted during the 1991 spawning season. Contemporaneous samples of adults were obtained by trawl sampling in the study region. Daily larval production (7.56 × 1010 larvae/d) and the larval mortality rate (Z=0.11/d) during the cruise were estimated from a larval “catch curve,” wherein the logarithm of total age-specific larval abundance was regressed against larval age. For this analysis, larval age compositions at each of the 150 sample sites were determined by examination of otolith microstructure from subsampled larvae (n=2203), which were weighted by the polygonal Sette-Ahlstrom area surrounding each station. Female population weight-specific fecundity was estimated through a life table analysis that incorporated sex-specific differences in adult growth rate, female maturity, fecundity, and natural mortality (M). The resulting statistic (102.17 larvae/g) was insensitive to errors in estimating M and to the pattern of recruitment. Together, the two analyses indicated that a total biomass equal to 1366 metric tons (t)/d of age-1+ shortbelly rockfish (sexes combined) was needed to account for the observed level of spawning output during the cruise. Given the long-term seasonal distribution of spawning activity in the study area, as elucidated from a retrospective examination of California Cooperative Oceanic Fisheries Investigation (CalCOFI) ichthyoplankton samples from 1952 to 1984, the “daily” total biomass was expanded to an annual total of 67,392 t. An attempt to account for all sources of error in the derivation of this estimate was made by application of the delta-method, which yielded a coefficient of variation of 19%. The relatively high precision of this larval production method, and the rapidity with which an absolute biomass estimate can be obtained, establishes that, for some species of rockfish (Sebastes spp.), it is an attractive alternative to traditional age-structured stock assessments.
Resumo:
Larval development of the southern sea garfish (Hyporhamphus melanochir) and the river garfish (H. regularis) is described from specimens from South Australian waters. Larvae of H. melanochir and H. regularis have completed notochord flexion at hatching and are characterized by an elongate body with distinct rows of melanophores along the dorsal, lateral, and ventral surfaces; a small to moderate head; a heavily pigmented and long straight gut; a persistent pre-anal finfold; and an extended lower jaw. Fin formation occurs in the following sequence: caudal, dorsal and anal (almost simultaneously), pectoral, and pelvic. Despite the similarities between both species and among hemiramphid larvae in general, H. melanochir larvae are distinguishable from H. regularis by 1) having 58–61 vertebrae (vs. 51–54 for H. regularis); 2) having 12–15 melanophore pairs in longitudinal rows along the dorsal margin between the head and origin of the dorsal fin (vs. 19–22 for H. regularis); and 3) the absence of a large ventral pigment blotch anteriorly on the gut and isthmus (present in H. regularis). Both species can be distinguished from similar larvae of southern Australia (other hemiramphids and a scomberosocid) by differences in meristic counts and pigmentation.
Resumo:
The spotted seatrout (Cynoscion nebulosus) is one of the most sought after recreational fish in Florida Bay, and it spends its entire life history within the bay (Rutherford et al.,1989b). The biology of adult spotted seatrout in Florida Bay is well known (Rutherford et al., 1982, 1989b) as is the distribution and abundance of juveniles within the bay. The habitats and diets of juveniles are well documented (Hettler, 1989; Chester and Thayer, 1990; Thayer et al., 1999; Florida Department of Environmental Protection1). Nevertheless, the spatial and temporal spawning habits of spotted seatrout and the distribution of larvae have only been partially described (Powell et al., 1989; Rutherford et al., 1989a).
Resumo:
This study reports new information about searobin (Prionotus spp.) early life history from samples collected with a Tucker trawl (for planktonic stages) and a beam trawl (for newly settled fish) from the coastal waters of New Jersey. Northern searobin, Prionotus carolinus, were much more numerous than striped searobin, P. evolans, often by an order of magnitude. Larval Prionotus were collected during the period July–October and their densities peaked during September. For both species, notochord flexion was complete at 6–7 mm standard length (SL) and individuals settled at 8–9 mm SL. Flexion occurred as early as 13 days after hatching and settlement occurred as late as 25 days after hatching, according to ages estimated from sagittal microincrements. Both species settled directly in continental shelf habitats without evidence of delayed metamorphosis. Spawning, larval dispersal, or settlement may have occurred within certain estuaries, particularly for P. evolans; thus collections from shelf areas alone do not permit estimates of total larval production or settlement rates. Reproductive seasonality of P. carolinus and P. evolans may vary with respect to latitude and coastal depth. In this study, hatching dates and sizes of age-0 P. carolinus varied with respect to depth or distance from the New Jersey shore. Older and larger age-0 individuals were found in deeper waters. These variations in searobin age and size appear to be the combined result of intraspecific variations in searobin reproductive seasonality and the limited capability of searobin eggs and larvae to disperse.
Resumo:
Age, size, abundance, and birthdate distributions were compared for larval Atlantic menhaden (Brevoortia tyrannus) collected weekly during their estuarine recruitment seasons in 1989–90, 1990–91, and 1992–93 in lower estuaries near Beaufort, North Carolina, and Tuckerton, New Jersey, to determine the source of these larvae. Larval recruitment in New Jersey extended for 9 months beginning in October but was discontinuous and was punctuated by periods of no catch that were associated with low water temperatures. In North Carolina, recruitment was continuous for 5–6 months beginning in November. Total yearly larval density in North Carolina was higher (15–39×) than in New Jersey for each of the 3 years. Larvae collected in North Carolina generally grew faster than larvae collected in New Jersey and were, on average, older and larger. Birthdate distributions (back-calculated from sagittal otolith ages) overlapped between sites and included many larvae that were spawned in winter. Early spawned (through October) larvae caught in the New Jersey estuary were probably spawned off New Jersey. Larvae spawned later (November–April) and collected in the same estuary were probably from south of Cape Hatteras because only there are winter water temperatures warm enough (≥16°C) to allow spawning and larval development. The percentage contribution of these late-spawned larvae from south of Cape Hatteras were an important, but variable fraction (10% in 1992–93 to 87% in 1989–90) of the total number of larvae recruited to this New Jersey estuary. Thus, this study provides evidence that some B. tyrannus spawned south of Cape Hatteras may reach New Jersey estuarine nurseries.