186 resultados para life history interviews
Resumo:
We investigated the feeding ecology of juvenile salmon during the critical early life-history stage of transition from shallow to deep marine waters by sampling two stations (190 m and 60 m deep) in a northeast Pacific fjord (Dabob Bay, WA) between May 1985 and October 1987. Four species of Pacific salmon—Oncorhynchus keta (chum) , O. tshawytscha (Chinook), O. gorbuscha (pink), and O. kisutch (coho)—were examined for stomach contents. Diets of these fishes varied temporally, spatially, and between species, but were dominated by insects, euphausiids, and decapod larvae. Zooplankton assemblages and dry weights differed between stations, and less so between years. Salmon often demonstrated strongly positive or negative selection for specific prey types: copepods were far more abundant in the zooplankton than in the diet, whereas Insecta, Araneae, Cephalapoda, Teleostei, and Ctenophora were more abundant in the diet than in the plankton. Overall diet overlap was highest for Chinook and coho salmon (mean=77.9%)—species that seldom were found together. Chum and Chinook salmon were found together the most frequently, but diet overlap was lower (38.8%) and zooplankton biomass was not correlated with their gut fullness (%body weight). Thus, despite occasional occurrences of significant diet overlap between salmon species, our results indicate that interspecific competition among juvenile salmon does not occur in Dabob Bay.
Resumo:
Despite its recreational and commercial importance, the movement patterns and spawning habitats of winter flounder (Pseudopleuronectes americanus) in the Gulf of Maine are poorly understood. To address these uncertainties, 72 adult winter flounder (27–48 cm) were fitted with acoustic transmitters and tracked by passive telemetry in the southern Gulf of Maine between 2007 and 2009. Two sympatric contingents of adult winter flounder were observed, which exhibited divergent spawning migrations. One contingent remained in coastal waters during the spawning season, while a smaller contingent of winter flounder was observed migrating to estuarine habitats. Estuarine residence times were highly variable, and ranged from 2 to 91 days (mean=28 days). Flounder were nearly absent from the estuary during the fall and winter months and were most abundant in the estuary from late spring to early summer. The observed seasonal movements appeared to be strongly related to water temperature. This is the first study to investigate the seasonal distribution, migration, and spawning behavior of adult winter flounder in the Gulf of Maine by using passive acoustic telemetry. This approach offered valuable insight into the life history of this species in nearshore and estuarine habitats and improved the information available for the conservation and management of this species.
Resumo:
Demographic parameters from seven exploited coral reef lutjanid species were compared as a case study of the implications of intrafamily variation in life histories for multispecies harvest management. Modal lengths varied by 4 cm among four species (Lutjanus fulviflamma, L. vitta, L. carponotatus, L. adetii), which were at least 6 cm smaller than the modal lengths of the largest species (L. gibbus, Symphorus nematophorus, Aprion virescens). Modal ages, indicating ages of full selection to fishing gear, were 10 years or less for all species, but maximum ages ranged from 12 (L. gibbus) to 36 years (S. nematophorus). Each species had a unique growth pattern, with differences in length-at-age and mean asymptotic fork length (L∞), but smaller species generally grew fast during the first 1–2 years of life and larger species grew more slowly over a longer period. Total mortality rates varied among species; L. gibbus had the highest mortality and L. fulviflamma, the lowest mortality. The variability in life history strategies of these tropical lutjanids makes generalizations about lutjanid life histories difficult, but the fact that all seven had characteristics that would make them particularly vulnerable to fishing indicates that harvest of tropical lutjanids should be managed with caution.
Age validation of great hammerhead shark (Sphyrna mokarran), determined by bomb radiocarbon analysis
Resumo:
Preliminary validation of annual growth band deposition in vertebrae of great hammerhead shark (Sphyrna mokarran) was conducted by using bomb radiocarbon analysis. Adult specimens (n=2) were collected and thin sections of vertebral centra were removed for visual aging and use in radiocarbon assays. Vertebral band counts were used to estimate age, and year of formation was assigned to each growth band by subtracting estimated age from the year of capture. A total of 10 samples were extracted from growth bands and analyzed for Δ14C. Calculated Δ14C values from dated bands were compared to known-age reference chronologies, and the resulting patterns indicated annual periodicity of growth bands up to a minimum age of 42 years. Trends in Δ14C across time in individual specimens indicated that vertebral radiocarbon is conserved through time but that habitat and diet may inf luence Δ14C levels in elasmobranchs. Although the age validation reported here must be considered preliminary because of the small sample size and narrow age range of individuals sampled, it represents the first confirmation of age in S. mokarran, further illustrating the usefulness of bomb radiocarbon analysis as a tool for life history studies in elasmobranchs.
Resumo:
Determining patterns of population connectivity is critical to the evaluation of marine reserves as recruitment sources for harvested populations. Mutton snapper (Lutjanus analis) is a good test case because the last known major spawning aggregation in U.S. waters was granted no-take status in the Tortugas South Ecological Reserve (TSER) in 2001. To evaluate the TSER population as a recruitment source, we genotyped mutton snapper from the Dry Tortugas, southeast Florida, and from three locations across the Caribbean at eight microsatellite loci. Both Fstatistics and individual-based Bayesian analyses indicated that genetic substructure was absent across the five populations. Genetic homogeneity of mutton snapper populations is consistent with its pelagic larval duration of 27 to 37 days and adult behavior of annual migrations to large spawning aggregations. Statistical power of future genetic assessments of mutton snapper population connectivity may benefit from more comprehensive geographic sampling, and perhaps from the development of less polymorphic DNA microsatellite loci. Research where alternative methods are used, such as the transgenerational marking of embryonic otoliths with barium stable isotopes, is also needed on this and other species with diverse life history characteristics to further evaluate the TSER as a recruitment source and to define corridors of population connectivity across the Caribbean and Florida.
Resumo:
The evolutionary associations between closely related fish species, both contemporary and historical, are frequently assessed by using molecular markers, such as microsatellites. Here, the presence and variability of microsatellite loci in two closely related species of marine fishes, sand seatrout (Cynoscion arenarius) and silver seatrout (C. nothus), are explored by using heterologous primers from red drum (Sciaenops ocellatus). Data from these loci are used in conjunction with morphological characters and mitochondrial DNA haplotypes to explore the extent of genetic exchange between species offshore of Galveston Bay, TX. Despite seasonal overlap in distribution, low genetic divergence at microsatellite loci, and similar life history parameters of C. arenarius and C. nothus, all three data sets indicated that hybridization between these species does not occur or occurs only rarely and that historical admixture in Galveston Bay after divergence between these species was unlikely. These results shed light upon the evolutionary history of these fishes and highlight the genetic properties of each species that are influenced by their life history and ecology.
Resumo:
The red deepsea crab (Chaceon quinquedens (Smith, 1879)) has supported a commercial fishery off the coast of New England since the 1970s (Wigley et al., 1975) and has had annual harvests from 400 metric tons (t) (1996) to 4000 t (2001) (NEFMC, 2002). In 2002, a fishery management plan for the northeast fishery on the Atlantic coast was implemented and total allowable catch was reduced to approximately 2500 t (NEFMC, 2002). Although there are management plans for the golden crab (C. fenneri) and the red deep sea crab for Atlantic coast regions, there is no fishery management plan for red deepsea crabs in the Gulf of Mexico. Successful management for sustainable harvests should be based on a knowledge of the life history of the species, but C. quinquedens has been a difficult species for which to obtain life history and abundance information because of its deep distribution.
Resumo:
This study was designed to improve our understanding of transitions in the early life history and the distribution, habitat use, and diets for young-of-the-year (YOY) goosefish (Lophius americanus) and, as a result, their role in northeastern U.S. continental shelf ecosystems. Pelagic juveniles (>12 to ca. 50 mm total length [TL]) were distributed over most portions of the continental shelf in the Middle Atlantic Bight, Georges Bank, and into the Gulf of Maine. Most individuals settled by 50−85 mm TL and reached approximately 60−120 mm TL by one year of age. Pelagic YOY fed on chaetognaths, hyperiid amphipods, calanoid copepods, and ostracods, and benthic YOY had a varied diet of fishes and benthic crustaceans. Goosefish are widely scattered on the continental shelf in the Middle Atlantic Bight during their early life history and once settled, are habitat generalists, and thus play a role in many continental shelf habit
Resumo:
The lack of information concerning the preservation of ovarian material of fish species inhibits standardization of methods for determining fecundity and measuring oocytes. The effects of four preservatives (10% phosphate-buffered formalin, modified Gilson’s solution, 70% ethanol, and freezing) on ovarian material weight and oocyte size were quantified for prespawning Atlantic cod (Gadus morhua), haddock (Melanogrammus aeglefinus), and American plaice (Hippoglossoides platessoides). Effects of preservation were similar between Atlantic cod and haddock but different between Atlantic cod and American plaice for nearly all comparisons. Although all treatments affected the weight of ovarian material, freezing caused the most change and formalin caused the least. Such signif icant species-specific effects should be quantified in the calculation of life history characteristics, such as fecundity, to minimize error. This is one of few studies dedicated to evaluating the effects of preservation on oocytes and ovarian material and is the first to evaluate multiple preservatives on species.
Resumo:
Mortality, fecundity, and size at maturity are important life history traits, and their interactions determine the evolution of life history strategies (Roff, 1992; Stearns, 1992; Charnov, 2002). These same traits are also important for population dynamics models (Hunter et al., 1992; Clark, 1999). It is increasingly important to accurately determine Greenland halibut (Reinhardtius hippoglossoides) life history traits and to correctly assess the status of its stocks because low recruitment or low biomass estimates have led to catch restrictions in the Bering Sea and Aleutian Islands (Ianelli et al.1), the Northeastern Arctic (Ådlandsvik et al., 2004), and the Northwest Atlantic (Bowering and Nedreaas, 2000).
Resumo:
In recent years, a decrease in the abundance of bluefish (Pomatomus saltatrix) has been observed (Fahay et al., 1999; Munch and Conover, 2000) that has led to increased interest in a better understanding the life history of the species. Estimates of several young-of-the-year (YOY) life history characteristics, including the importance and use of estuaries as nursery habitat (Kendall and Walford, 1979) and size-dependant mortality (Hare and Cowen, 1997), are reliant upon the accuracy of growth determination. By using otoliths, it is possible to use back-calculation formulae (BCFs) to estimate the length at certain ages and stages of development for many species of fishes. Use of otoliths to estimate growth in this way can provide the same information as long-term laboratory experiments and tagging studies without the time and expense of rearing or recapturing fish. The difficulty in using otoliths in this way lies in validating that 1) there is constancy in the periodicity of the increment formation, and 2) there is no uncoupling of the relationship between somatic and otolith growth. To date there are no validation studies demonstrating the relationship between otolith growth and somatic growth for bluefish. Daily increment formation in otoliths has been documented for larval (Hare and Cowen, 1994) and juvenile bluefish (Nyman and Conover, 1988). Hare and Cowen (1995) found ageindependent variability in the ratio of otolith size to body length in early age bluefish, although these differences varied between ontogenetic stages. Furthermore, there have been no studies where an evaluation of back-calculation methods has been combined with a validation of otolithderived lengths for juvenile bluefish.
Resumo:
Abundance indices derived from fishery-independent surveys typically exhibit much higher interannual variability than is consistent with the within-survey variance or the life history of a species. This extra variability is essentially observation noise (i.e. measurement error); it probably reflects environmentally driven factors that affect catchability over time. Unfortunately, high observation noise reduces the ability to detect important changes in the underlying population abundance. In our study, a noise-reduction technique for uncorrelated observation noise that is based on autoregressive integrated moving average (ARIMA) time series modeling is investigated. The approach is applied to 18 time series of finfish abundance, which were derived from trawl survey data from the U.S. northeast continental shelf. Although the a priori assumption of a random-walk-plus-uncorrelated-noise model generally yielded a smoothed result that is pleasing to the eye, we recommend that the most appropriate ARIMA model be identified for the observed time series if the smoothed time series will be used for further analysis of the population dynamics of a species.
Resumo:
We studied a small artisanal fishery for the spotted eagle ray (Aetobatus narinari) off Margarita Island in northeastern Venezuela. We analyzed data from 413 fishing trips directed at A. narinari over a 29-month sampling period (August 2005–December 2007). These trips yielded 55.9 metric tons and 1352 individuals from which a subsample of 846 females and 321 males was used for biological data. Maximum fishing effort and landings occurred between February and May, and catch per unit of effort was highest between December and February and between July and October with an overall average of 3 individuals and 133 kg per trip. The overall sex ratio was significantly different from 1:1 with a predominance of females. Females ranged in size with disc widths (DW) from 64 to 226 cm. Males ranged in size between 97 and 190 cm DW. There was no statistically significant difference between male and female length-weight relationships. Mean fecundity was estimated at 3.09 embryos per female, and the largest embryo measured 44.5 cm DW. Females in different maturity stages were found in all months, except November 2007, the month when all females were immature. Postgravid females occurred mainly during the periods of January–May and July–October. Mean length (L50) at maturity was estimated at 129.2 cm DW for males and 134.9 cm DW for females. This study provides much needed information on the biology and life history of A. narinari for the management of an intensive, directed, small-scale fishery for this little known species in northeastern Venezuela.
Resumo:
Priors are existing information or beliefs that are needed in Bayesian analysis. Informative priors are important in obtaining the Bayesian posterior distributions for estimated parameters in stock assessment. In the case of the steepness parameter (h), the need for an informative prior is particularly important because it determines the stock-recruitment relationships in the model. However, specifications of the priors for the h parameter are often subjective. We used a simple population model to derive h priors based on life history considerations. The model was based on the evolutionary principle that persistence of any species, given its life history (i.e., natural mortality rate) and its exposure to recruitment variability, requires a minimum recruitment compensation that enables the species to rebound consistently from low critical abundances (Nc). Using the model, we derived the prior probability distributions of the h parameter for fish species that have a range of natural mortality, recruitment variabilities, and Nt values.
Resumo:
The sea cucumber fishery in waters off Maine is developing and has recently experienced great increases in landings, corresponding to expanding export markets. Between 1994 and 1996, reported landings ranged from one to three million pounds (Fig. 1). In 1999, reported landings were over eight million pounds and rose to over nine million in 2000 (Feindel1). Like other developing fisheries, we have little information about the biology and ecology of the sea cucumber off Maine, limited data on the fishery, and little knowledge about the key life history processes that characterize its population dynamics. Therefore, we have a limited understanding of the current status of the resource and the impacts the fishery may have on the stock.