137 resultados para home monitoring


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coral reef ecosystems of the Virgin Islands Coral Reef National Monument, Virgin Islands National Park and the surrounding waters of St. John, U.S. Virgin Islands are a precious natural resource worthy of special protection and conservation. The mosaic of habitats including coral reefs, seagrasses and mangroves, are home to a diversity of marine organisms. These benthic habitats and their associated inhabitants provide many important ecosystem services to the community of St. John, such as fishing, tourism and shoreline protection. However, coral reef ecosystems throughout the U.S. Caribbean are under increasing pressure from environmental and anthropogenic stressors that threaten to destroy the natural heritage of these marine habitats. Mapping of benthic habitats is an integral component of any effective ecosystem-based management approach. Through the implementation of a multi-year interagency agreement, NOAA’s Center for Coastal Monitoring and Assessment - Biogeography Branch and the U.S. National Park Service (NPS) have completed benthic habitat mapping, field validation and accuracy assessment of maps for the nearshore marine environment of St. John. This work is an expansion of ongoing mapping and monitoring efforts conducted by NOAA and NPS in the U.S. Caribbean and replaces previous NOAA maps generated by Kendall et al. (2001) for the waters around St. John. The use of standardized protocols enables the condition of the coral reef ecosystems around St. John to be evaluated in context to the rest of the Virgin Island Territories and other U.S. coral ecosystems. The products from this effort provide an accurate assessment of the abundance and distribution of marine habitats surrounding St. John to support more effective management and conservation of ocean resources within the National Park system. This report documents the entire process of benthic habitat mapping in St. John. Chapter 1 provides a description of the benthic habitat classification scheme used to categorize the different habitats existing in the nearshore environment. Chapter 2 describes the steps required to create a benthic habitat map from visual interpretation of remotely sensed imagery. Chapter 3 details the process of accuracy assessment and reports on the thematic accuracy of the final maps. Finally, Chapter 4 is a summary of the basic map content and compares the new maps to a previous NOAA effort. Benthic habitat maps of the nearshore marine environment of St. John, U.S. Virgin Islands were created by visual interpretation of remotely sensed imagery. Overhead imagery, including color orthophotography and IKONOS satellite imagery, proved to be an excellent source from which to visually interpret the location, extent and attributes of marine habitats. NOAA scientists were able to accurately and reliably delineate the boundaries of features on digital imagery using a Geographic Information System (GIS) and fi eld investigations. The St. John habitat classification scheme defined benthic communities on the basis of four primary coral reef ecosystem attributes: 1) broad geographic zone, 2) geomorphological structure type, 3) dominant biological cover, and 4) degree of live coral cover. Every feature in the benthic habitat map was assigned a designation at each level of the scheme. The ability to apply any component of this scheme was dependent on being able to identify and delineate a given feature in remotely sensed imagery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-based pollution is commonly identified as a major contributor to the observed deterioration of shallow-water coral reef ecosystem health. Human activity on the coastal landscape often induces nutrient enrichment, hypoxia, harmful algal blooms, toxic contamination and other stressors that have degraded the quality of coastal waters. Coral reef ecosystems throughout Puerto Rico, including Jobos Bay, are under threat from coastal land uses such as urban development, industry and agriculture. The objectives of this report were two-fold: 1. To identify potentially harmful land use activities to the benthic habitats of Jobos Bay, and 2. To describe a monitoring plan for Jobos Bay designed to assess the impacts of conservation practices implemented on the watershed. This characterization is a component of the partnership between the U.S. Department of Agriculture (USDA) and the National Oceanic and Atmospheric Administration (NOAA) established by the Conservation Effects Assessment Project (CEAP) in Jobos Bay. CEAP is a multi-agency effort to quantify the environmental benefits of conservation practices used by private landowners participating in USDA programs. The Jobos Bay watershed, located in southeastern Puerto Rico, was selected as the first tropical CEAP Special Emphasis Watershed (SEW). Both USDA and NOAA use their respective expertise in terrestrial and marine environments to model and monitor Jobos Bay resources. This report documents NOAA activities conducted in the first year of the three-year CEAP effort in Jobos Bay. Chapter 1 provides a brief overview of the project and background information on Jobos Bay and its watershed. Chapter 2 implements NOAA’s Summit to Sea approach to summarize the existing resource conditions on the watershed and in the estuary. Summit to Sea uses a GIS-based procedure that links patterns of land use in coastal watersheds to sediment and pollutant loading predictions at the interface between terrestrial and marine environments. The outcome of Summit to Sea analysis is an inventory of coastal land use and predicted pollution threats, consisting of spatial data and descriptive statistics, which allows for better management of coral reef ecosystems. Chapters 3 and 4 describe the monitoring plan to assess the ecological response to conservation practices established by USDA on the watershed. Jobos Bay is the second largest estuary in Puerto Rico, but has more than three times the shoreline of any other estuarine area on the island. It is a natural harbor protected from offshore wind and waves by a series of mangrove islands and the Punta Pozuelo peninsula. The Jobos Bay marine ecosystem includes 48 km² of mangrove, seagrass, coral reef and other habitat types that span both intertidal and subtidal areas. Mapping of Jobos Bay revealed 10 different benthic habitats of varying prevalence, and a large area of unknown bottom type covering 38% of the entire bay. Of the known benthic habitats, submerged aquatic vegetation, primarily seagrass, is the most common bottom type, covering slightly less than 30% of the bay. Mangroves are the dominant shoreline feature, while coral reefs comprise only 4% of the total benthic habitat. However, coral reefs are some of the most productive habitats found in Jobos Bay, and provide important habitat and nursery grounds for fish and invertebrates of commercial and recreational value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A normalized difference vegetation index (NDVI) has been produced and archived on a 1° latitude by 1° longitude grid between 55°S and 75°N. The many sources of data errors in the NDVI include cloud contamination, scan angle biases, changes in solar zenith angle, and sensor degradation. Week-to-week variability, primarily caused by cloud contamination and scan angle biases, can be minimized by temporally filtering the data. Orbital drift and sensor degradation introduces interannual variability into the dataset. These trends make the usefulness of a long-term climatology uncertain and limit the usefulness of the NDVI. Elimination of these problems should produce an index that can be used for climate monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of mechanized fishing in India is traced to point out the harmful effects of trawling by way of disturbing the ecological balance of the ecosystem, of which the fish stocks are a part. It may cause the disappearance of some demersal species from the catches as brought out poignantly in the case of a marine catfish namely, Arius tenuispinis. History of trawling has been the same all over the world showing that depletion of demersal fish stocks is not only due to excessive harvesting but also due to the damage done to the ecological balance of the trawling grounds. The need for ecological monitoring of the trawling grounds is pointed out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the commencement of construction works of a 250 MW hydropower plant at Dumbbell Island in the Upper Victoria Nile in September 2007, BEL requested NaFIRRI to conduct continuous monitoring of fish catches at two transects i.e. the immediate upstream transect of the project site (Kalange-Makwanzi) and the immediate downstream .transect (Buyala-Kikubamutwe). The routine monitoring surveys were designed to be conducted twice a week at each of the tWo transects. It was anticipated that major immediate impacts were to occur during construction, and these needed to be known by BEL as part of a mitigation strategy. For example, the construction of it cofferdam could be accompanied by rapid changes in water quality and quantity downstream of the construction. These changes in turn could affect the fish catch and would probably be missed by the quarterly monitoring already in place. Therefore, a major cbjective of the more regular and rapid monitoring was to discern immediate impacts of construction activities by focusing on selected water quality parameters (total suspended solids, water conductivity, temperature, dissolved oxygen and pH) and fish catch characteristics (total catch, catch rates and value of the catch)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The survey covered by this report was undertaken between 6 th and 9th October 2009 as a follow-up on the during construction surveys of the Bujagali Hydropwer Project (BHPP). In addition to two pre-construction baseline surveys in April 2000 and April 2006, four monitoring surveys have so far been undertaken i.e. in September 2007, April 2008, April 2009 and the present one, in October 2009. The 2009 biannual monitoring surveys were conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: 1. water quality determinants 2. biology and ecology of fishes and food webs 3. fish stock and fish catch including economic aspects of catch and 4. sanitation/vector studies (bilharzias and river blindness)