132 resultados para Water quality standards
Resumo:
Sediments are an important location in determining the fate of nutrients entering the estuary. Role of sediments needs to be incorporated into water quality models. Purpose of this study was to estimate the portion of sediment oxygen consumption (SOC) and sediment ammonium (NH4+) release directly attributable to benthic invertebrates via the respiratory use of oxygen and catabolic release of ammonium. Samples were collected at 8 locations from August 1985 through November 1988. (PDF contains 45 pages)
Resumo:
A three day workshop on turbidity measurements was held at the Hawaii Institute of Marine Biology from August 3 1 to September 2, 2005. The workshop was attended by 30 participants from industry, coastal management agencies, and academic institutions. All groups recognized common issues regarding the definition of turbidity, limitations of consistent calibration, and the large variety of instrumentation that nominally measure "turbidity." The major recommendations, in order of importance for the coastal monitoring community are listed below: 1. The community of users in coastal ecosystems should tighten instrument design configurations to minimize inter-instrument variability, choosing a set of specifications that are best suited for coastal waters. The IS0 7027 design standard is not tight enough. Advice on these design criteria should be solicited through the ASTM as well as Federal and State regulatory agencies representing the majority of turbidity sensor end users. Parties interested in making turbidity measurements in coastal waters should develop design specifications for these water types rather than relying on design standards made for the analysis of drinking water. 2. The coastal observing groups should assemble a community database relating output of specific sensors to different environmental parameters, so that the entire community of users can benefit from shared information. This would include an unbiased, parallel study of different turbidity sensors, employing a variety of designs and configuration in the broadest range of coastal environments. 3. Turbidity should be used as a measure of relative change in water quality rather than an absolute measure of water quality. Thus, this is a recommendation for managers to develop their own local calibrations. See next recommendation. 4. If the end user specifically wants to use a turbidity sensor to measure a specific water quality parameter such as suspended particle concentration, then direct measurement of that water quality parameter is necessary to correlate with 'turbidity1 for a particular environment. These correlations, however, will be specific to the environment in which they are measured. This works because there are many environments in which water composition is relatively stable but varies in magnitude or concentration. (pdf contains 22 pages)
Resumo:
Abstract The rapid growth of both formal and informal high density urban settlements around major water resources has led to increased pollution of streams, rivers, lakes and estuaries, due to contaminated runoff from these developments. The paper identified major contaminants to be : organic waste (sewage), industrial effluent, pesticides and litter. Pollutant loads vary depending on the hydrology of the urban area, local topography and soil conditions. In some instances, severe pollution of neighbouring and downstream water courses has been observed. The management of catchment land uses, riparian zones, in stream habitat, as well as in stream water flow patterns and quality are necessary in order to sustain the integrity and "health" of water resources, for fisheries and other developments. As such, attempts to ensure a certain level of water quality without attention to other aspects will not automatically ensure a "healthy" ecosystem even as fish habitat. Proper management leads to better water quality and conducive environment for increased fish production
Resumo:
Congress established a legal imperative to restore the quality of our surface waters when it enacted the Clean Water Act in 1972. The act requires that existing uses of coastal waters such as swimming and shellfishing be protected and restored. Enforcement of this mandate is frequently measured in terms of the ability to swim and harvest shellfish in tidal creeks, rivers, sounds, bays, and ocean beaches. Public-health agencies carry out comprehensive water-quality sampling programs to check for bacteria contamination in coastal areas where swimming and shellfishing occur. Advisories that restrict swimming and shellfishing are issued when sampling indicates that bacteria concentrations exceed federal health standards. These actions place these coastal waters on the U.S. Environmental Protection Agencies’ (EPA) list of impaired waters, an action that triggers a federal mandate to prepare a Total Maximum Daily Load (TMDL) analysis that should result in management plans that will restore degraded waters to their designated uses. When coastal waters become polluted, most people think that improper sewage treatment is to blame. Water-quality studies conducted over the past several decades have shown that improper sewage treatment is a relatively minor source of this impairment. In states like North Carolina, it is estimated that about 80 percent of the pollution flowing into coastal waters is carried there by contaminated surface runoff. Studies show this runoff is the result of significant hydrologic modifications of the natural coastal landscape. There was virtually no surface runoff occurring when the coastal landscape was natural in places such as North Carolina. Most rainfall soaked into the ground, evaporated, or was used by vegetation. Surface runoff is largely an artificial condition that is created when land uses harden and drain the landscape surfaces. Roofs, parking lots, roads, fields, and even yards all result in dramatic changes in the natural hydrology of these coastal lands, and generate huge amounts of runoff that flow over the land’s surface into nearby waterways. (PDF contains 3 pages)
Resumo:
While New Hanover County is the second smallest county in North Carolina, it is also the second most densely populated with approximately 850 people per square mile. Nestled between the Cape Fear River and Atlantic Ocean with surrounding barrier island beach communities, the County’s geographic location provides a prime vacation destination, as well as an ideal location for residents who wish to live at the water’s edge. Wilmington is the largest city in the County with a population just under 200,000. Most of the Wilmington metropolitan area is developed, creating intense development pressures for the remaining undeveloped land in the unincorporated County. In order to provide development opportunities for mixed use or high density projects within unincorporated New Hanover County where appropriate urban features are in place to support such projects without the negative effects of urban sprawl, County Planning Staff recently developed an Exceptional Design Zoning District (EDZD). Largely based on the LEED for Neighborhood Development program, the EDZD standards were scaled to fit the unique conditions of the County with the goal of encouraging sustainable development while providing density incentives to entice the use of the voluntary district. The incentive for the voluntary zoning district is increased density in areas where the density may not be allowed under normal circumstances. The rationale behind allowing for higher density projects is that development can be concentrated in areas where appropriate urban features are in place to support such projects, and the tendency toward urban sprawl can be minimized. With water quality being of high importance, it is perceived that higher density development will better protect water quality then lower density projects. (PDF contains 4 pages)
Resumo:
The Water Framework Directive (WFD; European Commission 2000) is a framework for European environmental legislation that aims at improving water quality by using an integrated approach to implement the necessary societal and technical measures. Assessments to guide, support, monitor and evaluate policies, such as the WFD, require scientific approaches which integrate biophysical and human aspects of ecological systems and their interactions, as outlined by the International Council for Science (2002). These assessments need to be based on sound scientific principles and address the environmental problems in a holistic way. End-users need help to select the most appropriate methods and models. Advice on the selection and use of a wide range of water quality models has been developed within the project Benchmark Models for the Water Framework Directive (BMW). In this article, the authors summarise the role of benchmarking in the modelling process and explain how such an archive of validated models can be used to support the implementation of the WFD.
Resumo:
The three Biesbosch Reservoirs are pumped storage reservoirs, fed with rather polluted and highly eutrophic water from the River Meuse. Air injection at the bottom of the reservoirs prevents thermal stratification, which would otherwise result in serious water quality deterioration. Reservoir mixing also serves as an economic algal control measure; mixing over sufficient depth causes light to play the role of limiting factor and this, combined with zooplankton grazing, keeps the biomass of phytoplankton at acceptable levels. Special problems are caused by benthic, geosmin-producing Oscillatoria species growing on the inner embankment. Rooting up the bottom with a harrow is used as the method of control, based on underwater observations by biological staff trained as SCUBA-divers. With regard to pollutant behaviour the three reservoirs act as a series of fully mixed reactors. This enables the application of kinetic models to describe their behaviour and allows the use of a selective intake policy, e.g. for suspended solids with associated contaminants, ammonia and polynuclear aromatic hydrocarbons. A combination of selective intake and self- purification processes - enhanced by the compartmentalisation of the storage volume in three reservoirs - leads to a striking improvement for many water-quality parameters.
Resumo:
It is widely recognised that conventional culture techniques may underestimate true viable bacterial numbers by several orders of magnitude. The basis of this discrepancy is that a culture in or on media of high nutrient concentration is highly selective (either through ”nutrient shock” or failure to provide vital co-factors) and decreases apparent diversity; thus it is unrepresentative of the natural community. In addition, the non-culturable but viable state (NCBV) is a strategy adopted by some bacteria as a response to environmental stress. The basis for the non-culturable state is that cells placed in conditions present in the environment cannot be recultured but can be shown to maintain their viability. Consequently, these cells would not be detected by standard water quality techniques that are based on culture. In the case of pathogens, it may explain outbreaks of disease in populations that have not come into contact with the pathogen. However, the NCBV state is difficult to attribute, due to the failure to distinguish between NCBV and non-viable cells. This article will describe experiences with the fish pathogen Aeromonas salmonicida subsp. salmonicida and the application of molecular techniques for its detection and physiological analysis.
Resumo:
The purpose of the project is to improve our understanding about best management practices that can be utilized on diked managed wetlands in Suisun Marsh for reducing the occurrence of low dissolved oxygen (DO) and high methylmercury (MeHg) events associated primarily with fall flood-up practices. Low DO events are of concern because they can lead to undue stress and even mortality of sensitive aquatic organisms. Elevated MeHg levels are of concern because MeHg is a neurotoxin that bio-magnifies up the food chain and can cause deleterious effects to higher trophic level consumers such as piscivorous fish, birds, and mammals (including humans). This study involved two years (2007-2008) of intensive field data collection at two managed wetland sites in northwest Suisun Marsh and their surrounding tidal sloughs, an area with prior documented low DO events. In addition, the study collected limited soils and water quality field data and mapped vegetation for three managed wetland sites in the central interior of Suisun Marsh, for the purpose of examining whether wetlands at other locations exhibit characteristics that could indicate potential for similar concerns. In Year 1 of the study, the objective was to identify the baseline conditions in the managed wetlands and determine which physical management conditions could be modified for Year 2 to reduce low DO and MeHg production issues most effectively. The objective of Year 2 was to evaluate the effectiveness of these modified management actions at reducing production of low DO and elevated MeHg conditions within the managed wetlands and to continue improving understanding of the underlying biogeochemical processes at play. This Final Evaluation Memorandum examined a total of 19 BMPs, 14 involving modified water management operations and the remaining five involving modified soil and vegetation management practices. Some of these BMPs were previously employed and others have not yet been tested. For each BMP this report assesses its efficacy in improving water quality conditions and potential conflicts with wetland management. It makes recommendations for further study (either feasibility assessments or field testing) and whether to consider for future use. Certain previously used BMPs were found to be important contributors to poor water quality conditions and their continued use is not recommended. Some BMPs that could improve water quality conditions appear difficult to implement in regards to compatibility with wetland management; these BMPs require further elaboration and feasibility assessment to determine whether they should be field tested. In practice for any given wetland, there is likely a combination of BMPs that would together have the greatest potential to address the low DO and high MeHg water quality concerns. Consequently, this report makes no sweeping recommendations applicable to large groups of wetlands but instead promotes a careful consideration of factors at each wetland or small groups of wetlands and from that assessment to apply the most effective suite of BMPs. This report also identifies a number of recommended future actions and studies. These recommendations are geared toward improving the process understanding of factors that promote low DO and high MeHg conditions, the extent of these problems in Suisun Marsh, the regulatory basis for the DO standards for a large estuarine marsh, the economics of BMPs, and alternative approaches to BMPs on diked managed wetlands that may address the water quality issues. The most important of these recommendations is that future BMP implementation should be carried out within the context of rigorous scientific evaluation so as to gain the maximum improvement in how to manage these water quality issues in the diked managed wetlands of Suisun Marsh.
Resumo:
The Ribble estuary (North West England) is sampled for water quality twelve times a year. The suite of parameters used for baseline monitoring is only analysed four times a year on the designated sampling sites. The sampling locations are shown in Figure 1, and their descriptions are found in Appendix 1. The baseline monitoring stations have been chosen to respond to regional, national and European requirements. The suite of parameters to be analysed in the laboratory is listed in Tables 1 and 2. Appendix 2 lists the environmental quality objectives (EQOs) and standards (EQSs) for estuaries and coastal waters. These values will help in interpreting the collected data from the Ribble surveys.
Resumo:
Mathematical models for heated water outfalls were developed for three flow regions. Near the source, the subsurface discharge into a stratified ambient water issuing from a row of buoyant jets was solved with the jet interference included in the analysis. The analysis of the flow zone close to and at intermediate distances from a surface buoyant jet was developed for the two-dimensional and axisymmetric cases. Far away from the source, a passive dispersion model was solved for a two dimensional situation taking into consideration the effects of shear current and vertical changes in diffusivity. A significant result from the surface buoyant jet analysis is the ability to predict the onset and location of an internal hydraulic jump. Prediction can be made simply from the knowledge of the source Froude number and a dimensionless surface exchange coefficient. Parametric computer programs of the above models are also developed as a part of this study. This report was submitted in fulfillment of Contract No. 14-12-570 under the sponsorship of the Federal Water Quality Administration.
Resumo:
This is the Water Level Management Plan for the Rostherne Mere by the Environment Agency. The purpose of the Plan is to provide a formal basis for managing the land drainage system and water supply system of the area in order to provide a sustainable balance between the conservation and agricultural interest in the area. No changes are proposed to present water level management or maintenance practices unless and until such changes are agreed by all parties. The report contains sections on description of Site, water level management, maintenance, nature conservation, agriculture, fisheries, archaeology, water quality and water resources, development adjacent to watercourses, contingencies and objectives of the Water Level Management.
Resumo:
This is the Kent estuary 1992 surveys: Summary of results produced by the National Rivers Authority in 1993. The report summarises routine and baseline water quality surveys carried out on the Kent estuary during 1992. Baseline surveys are designed to respond to regional, national, and European requirements. During 1992 baseline surveys were carried out in June and December. Unfortunately, in June, samples could only be taken from stations 3, 7 and 8. For ease of interpretation the results have been presented in graph form, including the maximum and minimum parameter concentration and the appropriate Environmental Quality Standards (EQS). The parameters measured in this survey were physical parameters (temperature, BOD, dissolved oxygen, Ph, salinity, conductivity); nutrients (ammonia, phosphate, and nitrate); metals (Mercury, Nickel, Arsenic, Cadmium, Chromium, Cooper, Boron, and Zinc) and organic compounds.
Resumo:
Study Goals and Objectives: 1) Improve existing nutrient-related eutrophication assessment methods, updating (from early 1990s to early 2000s) the eutrophication assessment for systems included in the study with the improved method. 2) Develop a human-use/socioeconomic indicator to complement the assessment indicator. The human-use indicator was developed to evaluate costs of nutrient-related degradation in coastal waters and to put the issue into a broader context relevant to the interested public and legislators as well as to scientists. 3) Project objectives included collecting existing water quality data, developing an accessible database appropriate for application to a national study, and applying the assessment methods to 14 coastal systems – nine systems north of Cape Cod and five systems south. The geographical distribution of systems was used to examine potential regional differences in condition. 4) The intent is to use the lessons learned in this pilot study on a national scale to guide completion of an update of the 1999 National Estuarine Eutrophication Assessment.
Resumo:
This report is the second in a series from a project to assess land-based sources of pollution (LBSP) and effects in the St. Thomas East End Reserves (STEER) in St. Thomas, USVI, and is the result of a collaborative effort between NOAA’s National Centers for Coastal Ocean Science, the USVI Department of Planning and Natural Resources, the University of the Virgin Islands, and The Nature Conservancy. Passive water samplers (POCIS) were deployed in the STEER in February 2012. Developed by the US Geological Survey (USGS) as a tool to detect the presence of water soluble contaminants in the environment, POCIS samplers were deployed in the STEER at five locations. In addition to the February 2012 deployment, the results from an earlier POCIS deployment in May 2010 in Turpentine Gut, a perennial freshwater stream which drains to the STEER, are also reported. A total of 26 stormwater contaminants were detected at least once during the February 2012 deployment in the STEER. Detections were high enough to estimate ambient water concentrations for nine contaminants using USGS sampling rate values. From the May 2010 deployment in Turpentine Gut, 31 stormwater contaminants were detected, and ambient water concentrations could be estimated for 17 compounds. Ambient water concentrations were estimated for a number of contaminants including the detergent/surfactant metabolite 4-tert-octylphenol, phthalate ester plasticizers DEHP and DEP, bromoform, personal care products including menthol, indole, n,n-diethyltoluamide (DEET), along with the animal/plant sterol cholesterol, and the plant sterol beta-sitosterol. Only DEHP appeared to have exceeded a water quality guideline for the protection of aquatic organisms.