139 resultados para Tilapia-Enfermedades
Resumo:
An aquaponic system was studied through the integrated culture of mono-sex GIFT and two types of vegetables viz. morning glory, Ipomoea reptans and taro, Colocasia esculenta in a recirculating system for 15 weeks. Tilapia fry of uniform size of 0.76 g were released in three treatments (stocking densities): 106 fish/m³ (T1), 142 fish/m³ (T2) and 177 fish/m³ (T3) to assess the effect of stocking density on the growth performance of fish. Fish were fed with a commercial feed containing 25% protein. Weight gain (g) of tilapia ranged from 19.41 to 32.67 g and was inversely related with stocking density. Percent weight gain varied between 2553.99 and 4298.68% and was significantly different among the treatments. SGR ranged from 3.09 to 3.59% per day and varied significantly. FCR varied from 2.19 to 2.69 and had a positive correlation with stocking density. The highest survival rate (%) was achieved in T1 (99%) followed by T2 (98%) and T3 (96%). Production of fish ranged from 3.43 to 3.52 kg/m³ and was inversely related with stocking density. The present study demonstrated that 106 fish/m³ was the best stocking density in terms of growth, food conversion ratio, survival and production for tilapia culture in the aquaponic system.
Resumo:
The paper presents the result of the study on the polyculture of the different species of carp with tilapia and milkfish. Polyculture does not hamper the growth of primary species but rather increased the production. However, bighead carp and silver grow faster compared to other species.
Resumo:
In this study, quality of fresh, slow frozen and quick frozen tilapia fillets and its changes during storage at -18C° were investigated. For preparation the samples, fresh tilapia fillets were frozen by slow and quick frozen methods. Slow frozen samples were prepared by storing the packed fillets directly in the -18 C°. The sprila freezing tunle with -30C° was also used for preparation the quick frozen sample. The quick frozen samples were then stored at -18C°for six months. Proximate composition, fatty acid profiles, TBA, PV, TVN, Total cuont, Drip loss, and sensory evaluation of the samples were determined in every month. Scanning Electron Microscopy (SEM) was used for study on the effects of the frozen condition on the microstructure of the fillets. Results indicated that two different frozen methods had significantly different effects on the quality of the fillets. Most of the proximate composition (protein, moistre and fat) reduced during the storage. Quick frozen filets had significantly (P<0.05) lower reduction than slow frozen samples. All of the chemical quality indexes (PV, TBA, and TVN) increased during the storage as compered to the fresh samples. In these paramethers, the slow freezing had higher changes than quick freezing metods (P<0.05). The microbial properties of the samples showed decrese during the storage. Lower amont of total cuont was observed at the end of the storage time in the quick frozen samples than slow frozen once (P<0.05). The large changes in the fatty acid profiles of the sample were fond in all samples. During the storage SFA and MUF of the samples increased however, the PUFA decresed. A lower change was obseved in the quick frozen samples than slow frozen samples (P<0.05). Drip loss was increased in both frozen samples during the storage period. The percentage of the drip in the slow frozen samples was significantly higer than quick frozen samples (P<0.05). SEM micrographs were also showed that the chnges in the microstructur of the samples was different in the slow and frozen samples. Slow freezing methods had higher damge in the microstructure of the sample then quick freezing mathods. Sensory evaluation of the samples indicated that a better acceptability in the quick frozen samples than slow frozen sample (P<0.05).
Resumo:
Tilapia (Oreochromis spp.) consumption is limited due to its strong muddy odour and the difficulty of processing. In addition, consumption of tilapia is minimal in urban areas because of the low availability. There are no processed market products of tilapia available in Sri Lanka. Therefore, this study was designed to develop a new marinade for tilapia and to evaluate the shelf life of the product. Twelve different treatments of varying amounts of vinegar, salt, chili powder, white pepper and garlic powder were applied to filleted tilapia, and three best treatment combinations were selected using a sensory evaluation test. Processed tilapia was stored in the freezer at -4°C. Treated samples were subjected to evaluation of sensory profile: taste, odour, colour, texture and overall acceptability. Analysis of the shelf life was carried out by using the total plate count, faecal coliform test, acidity and pH at weekly intervals. Results revealed that the third treatment (vinegar 75 ml, salt 5 g, chili powder 5 g, white pepper 5 g and garlic powder 5 g) was best in terms of colour, texture, odour, taste and the overall acceptability according to the estimated medians (6, 6, 6 and 6.33 respectively). There was no significant difference between the first and the third treatment in terms of odour and overall acceptability. There was no significant difference between the three vacuum packed treatments for acidity and pH. Acidity and pH of the three treatments were at an acceptable level, which was below pH 5.3 and above 1.95% acidity. Average bacterial count was 10 colonies and 1.33x10 super(6) colonies respectively in vacuum packed treatments and bottled samples after one week. The acceptable level of bacterial colonies is 1.00x10 super(5). Vacuum packed treatments showed a one month shelf life. In conclusion, marinades can be developed from tilapia with a pleasant taste and acceptable texture.
Resumo:
The objective of this study was to develop soy protein fortified fish sticks from Tilapia. Two preliminary studies were conducted to select the best fish-soy protein-spice mixture combination with four treatments to develop breaded fish sticks. Developed products were organoleptically assessed using 30 untrained panellists with 7-point hedonic scale. The product developed with new combination was compared with market product. Sixty percent of Tilapia fish mince, 12% of Defatted Textured Soy protein (DTSP), 1.6% of salt and 26.4% of ice water (<5°C) and Spice mixture containing 3g of garlic, 2g of pepper 2g of onion and 1.6g of cinnamon were selected as the best formula to manufacture the product. There was no significant difference when compared with market samples in relation to the organoleptic attributes. Proximate composition of the product was 25.76% of crude protein, 2.38% of crude fat, 60.35% of moisture and2.75% of ash. Products were packaged in Poly Vinyl Chloride clear package (12 gauge) and were stored at -1°C and changes in moisture content, peroxide value, pH value and microbiological parameters were assessed during five weeks of storage. Organoleptic acceptability was not changed significantly in all parameters tested (p>0.05). Total aerobic count and yeast and mould count were in acceptable ranges in frozen storage for 5 weeks. Data were analyzed using AN OVA and Friedman non-parametric test.
Resumo:
The research was conducted to determine the toxicity of extracts from five Philippine species of marine sponges on tilapia Oreochromis niloticus fry. It was found out that the most potent was the methanol extract of Dysidea herbacea, it kills with the least toxin and at the shortest time.