163 resultados para Reproductive Science
Resumo:
Jumbo squid (Dosidicus gigas) and purpleback squid (Sthenoteuthis oualaniensis) (Teuthida: Ommastrephidae) are thought to spawn in the eastern tropical Pacific. We used 10 years of plankton tow and oceanographic data collected in this region to examine the reproductive habits of these 2 ecologically important squid. Paralarvae of jumbo squid and purpleback squid were found in 781 of 1438 plankton samples from surface and oblique tows conducted by the Southwest Fisheries Science Center (NOAA) in the eastern tropical Pacific over the 8-year period of 1998–2006. Paralarvae were far more abundant in surface tows (maximum: 1588 individuals) than in oblique tows (maximum: 64 individuals). A generalized linear model analysis revealed sea-surface temperature as the strongest environmental predictor of paralarval presence in both surface and oblique tows; the likelihood of paralarval presence increases with increasing temperature. We used molecular techniques to identify paralarvae from 37 oblique tows to species level and found that the purpleback squid was more abundant than the jumbo squid (81 versus 16 individuals).
Resumo:
The reproductive biology of Yellowfin Tuna (Thunnus albacares) in the western Indian Ocean was investigated from samples collected in 2009 and 2010. In our study, 1012 female Yellowfin Tuna were sampled: 320 fish on board a purse seiner and 692 fish at a Seychelles cannery. We assessed the main biological parameters that describe reproductive potential: maturity, spawning seasonality, fish condition, and fecundity. The length at which 50% of the female Yellowfin Tuna population matures (L50) was estimated at 75 cm in fork length (FL) when the maturity threshold was established at the cortical alveolar stage of oocyte development. To enable comparison with previous studies, L50 also was estimated with maturity set at the vitellogenic stage of oocyte development; this assessment resulted in a higher value of L50 at 102 cm FL. The main spawning season, during which asynchrony in reproductive timing among sizes was observed, was November–February and a second peak occurred in June. Smaller females (<100 cm FL) had shorter spawning periods (December to February) than those (November to February and June) of large individuals, and signs of skip-spawning periods were observed among small females. The Yellowfin Tuna followed a “capital-income” breeder strategy during ovarian development, by mobilizing accumulated energy while using incoming energy from feeding. The mean batch fecundity for females 79–147 cm FL was estimated at 3.1 million oocytes, and the mean relative batch fecundity was 74.4 oocytes per gram of gonad-free weight. Our results, obtained with techniques defined more precisely than techniques used in previous studies in this region, provide an improved understanding of the reproductive cycle of Yellowfin Tuna in the western Indian Ocean.
Resumo:
Gonadal morphology and reproductive biology of the Black Anglerfish (Lophius budegassa) were studied by examining 4410 specimens collected between June 2007 and December 2010 in the northwestern Mediterranean Sea. Ovaries and testes presented traits common among fishes of the order Lophiiformes. Spawning occurred between November and March. Size at first maturity (L50) was 33.4 cm in total length (TL) for males and 48.2 cm TL for females. Black Anglerfish is a total spawner with group-synchronous oocyte development and determinate fecundity. Fecundity values ranged from 87,569 to 398,986 oocytes, and mean potential fecundity was estimated at 78,929 (standard error of the mean [SE] 13,648) oocytes per kilogram of mature female. This study provides the first description of the presence of 2–3 eggs sharing the same chamber and a semicystic type of spermatogenesis for Black Anglerfish. This new information allows for a better understanding of Black Anglerfish reproduction—knowledge that will be useful for the assessment and management of this species.
Resumo:
In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.
Resumo:
The genus Sebastes consists of over 100 fish species, all of which are viviparous and long-lived. Previous studies have presented schemes on the reproductive biology of a single targeted species of the genus Sebastes, but all appear to possess a similar reproductive biology as evidenced by this and other studies. This atlas stages major events during spermatogenesis, oogenesis, and embryogenesis, including atresia, in six species of Sebastes (S. alutus, S. elongatus, S. helvomaculatus, S. polyspinis, S. proriger, and S. zacentrus). Our study suggests that the male reproductive cycle of Sebastes is characterized by 11 phases of testicular development, with 10 stages of sperm development and 1 stage of spermatozoa atresia. Ovarian development was divided into 12 phases, with 10 stages of oocyte development, 1 stage of embryonic development, and 1 stage of oocyte atresia. Embryonic development up to parturition was divided into 33 stages following the research of Yamada and Kusakari (1991). Reproductive development of all six species examined followed the developmental classifications listed above which may apply to all species of Sebastes regardless of the number of broods produced annually. Multiple brooders vary in that not all ova are fertilized and progress to embryos; a proportion of ova are arrested at the pre-vitellogenic stage. Reproductive stage examples shown in this atlas use S. elongates for spermatic development, S. proriger for oocyte development, and S. alutus for embryological development, because opportunistic sampling only permitted complete analysis of each respective developmental phase for those species. The results of this study and the proposed reproductive phases complement the recommended scheme submitted by Brown-Peterson et al. (2011), who call for a standardization of terminology for describing reproductive development of fishes.
Resumo:
The Age and Growth Program at the Alaska Fisheries Science Center is tasked with providing age data in order to improve the basic understanding of the ecology and fisheries dynamics of Alaskan fish species. The primary focus of the Age and Growth Program is to estimate ages from otoliths and other calcified structures for age-structured modeling of commercially exploited stocks; however, the program has recently expanded its interests to include numerous studies on topics ranging from age estimate validation to the growth and life history of non-target species. Because so many applications rely upon age data and particularly upon assurances as to their accuracy and precision, the Age and Growth Program has developed this practical guide to document the age determination of key groundfish species from Alaskan waters. The main objective of this manual is to describe techniques specific to the age determination of commercially and ecologically important species studied by the Age and Growth Program. The manual also provides general background information on otolith morphology, dissection, and preparation, as well as descriptions of methods used to measure precision and accuracy of age estimates. This manual is intended not only as a reference for age readers at the AFSC and other laboratories, but also to give insight into the quality of age estimates to scientists who routinely use such data.