112 resultados para Poisson distribution
Resumo:
Six years of bottom-trawl survey data, including over 6000 trawls covering over 200 km2 of bottom area throughout Alaska’s subarctic marine waters, were analyzed for patterns in species richness, diversity, density, and distribution of skates. The Bering Sea continental shelf and slope, Aleutian Islands, and Gulf of Alaska regions were stratified by geographic subregion and depth. Species richness and relative density of skates increased with depth to the shelf break in all regions. The Bering Sea shelf was dominated by the Alaska skate (Bathyraja parmifera), but species richness and diversity were low. On the Bering Sea slope, richness and diversity were higher in the shallow stratum, and relative density appeared higher in subregions dominated by canyons. In the Aleutian Islands and Gulf of Alaska, species richness and relative density were generally highest in the deepest depth strata. The data and distribution maps presented here are based on species-level data collected throughout the marine waters of Alaska, and this article represents the most comprehensive summary of the skate fauna of the region published to date.
Resumo:
We examined the diel ver-tical distribution, concentration, and community structure of ichthyoplank-ton from a single station 69 km off the central Oregon coast in the northeast Pacific Ocean. The 74 depth-stratified samples yielded 1571 fish larvae from 20 taxa, representing 11 families, and 128 fish eggs from 11 taxa within nine families. Dominant larval taxa were Sebastes spp. (rockfishes), Stenobra-chius leucopsarus (northern lampfish), Tarletonbeania crenularis (blue lan-ternfish), and Lyopsetta exilis (slender sole), and the dominant egg taxa were Sardinops sagax (Pacific sardine), Icichthys lockingtoni (medusafish), and Chauliodus macouni (Pacific viperfish). Larval concentrations generally increased from the surface to 50 m, then decreased with depth. Larval concentrations were higher at night than during the day, and there was evidence of larval diel vertical migration. Depth stratum was the most important factor explaining variability in larval and egg concentrations.
Resumo:
Leatherback turtles (Dermochelys coriacea) are regularly seen off the U.S. West Coast, where they forage on jellyfish (Scyphomedusae) during summer and fall. Aerial line-transect surveys were conducted in neritic waters (<92 m depth) off central and northern California during 1990−2003, providing the first foraging population estimates for Pacific leatherback turtles. Males and females of about 1.1 to 2.1 m length were observed. Estimated abundance was linked to the Northern Oscillation Index and ranged from 12 (coefficient of variation [CV] =0.75) in 1995 to 379 (CV= 0.23) in 1990, averaging 178 (CV= 0.15). Greatest densities were found off central California, where oceanographic retention areas or upwelling shadows created favorable habitat for leatherback turtle prey. Results from independent telemetry studies have linked leatherback turtles off the U.S. West Coast to one of the two largest remaining Pacific breeding populations, at Jamursba Medi, Indonesia. Nearshore waters off California thus represent an important foraging region for the critically endangered Pacific leatherback turtle.
Resumo:
The eastern Steller sea lion (Eumetopias jubatus) population comprises animals that breed along the west coast of North America between California and southeastern Alaska. There are currently 13 major rookeries (>50 pups): five in southeastern Alaska, three in British Columbia, two in Oregon, and three in California. Overall abundance has increased at an average annual rate of 3.1% since the 1970s. These increases can largely be attributed to population recovery from predator-control kills and commercial harvests, and abundance is now probably as high as it has been in the last century. The number of rookeries has remained fairly constant (n=11 to 13) over the past 80 years, but there has been a northward shift in distribution of both rookeries and numbers of animals. Based on the number of pups counted in a population-wide survey in 2002, total pup production was estimated to be about 11,000 (82% in southeastern Alaska and British Columbia), representing a total population size as approximately 46,000−58,000 animal
Resumo:
Because of a lack of fishery-dependent data, assessment of the recovery of fish stocks that undergo the most aggressive form of management, namely harvest moratoriums, remains a challenge. Large schools of red drum (Sciaenops ocellatus) were common along the northern Gulf of Mexico until the late 1980s when increased fishing effort quickly depleted the stock. After 24 years of harvest moratorium on red drum in federal waters, the stock is in need of reassessment; however, fisherydependent data are not available in federal waters and fishery-independent data are limited. We document the distribution, age composition, growth, and condition of red drum in coastal waters of the north central Gulf of Mexico, using data collected from a nearshore, randomized, bottom longline survey. Age composition of the fishery-independent catch indicates low mortality of fish age 6 and above and confirms the effectiveness of the federal fishing moratorium. Bottom longline surveys may be a cost-effective method for developing fishery-independent indices for red drum provided additional effort can be added to nearshore waters (<20 m depth). As with most stocks under harvest bans, effective monitoring of the recovery of red drum will require the development of fishery-independent indices. With limited economic incentive to evaluate non-exploited stocks, the most cost-effective approach to developing such monitoring is expansion of existing fishery independent surveys. We examine this possibility for red drum in the Gulf of Mexico and recommend the bottom longline survey conducted by the National Marine Fisheries Service expand effort in nearshore areas to allow for the development of long-term abundance indices for red drum.
Resumo:
Aspects of the feeding migration of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea (EBS) were investigated by examining the relationship between temperatures and densities of fish encountered during acoustic and bottom trawl surveys conducted in spring and summer between 1982 and 2001. Bottom temperature was used as an indicator of spring and summer warming of the EBS. Clusters of survey stations were identified where the density of walleye pollock generally increased or decreased with increasing water temperature. Inferences about the direction and magnitude of the spring and summer feeding migration were made for five length categories of walleye pollock. Generally, feeding migrations appeared to be northward and shoreward, and the magnitude of this migration appeared to increase with walleye pollock size up to 50 cm. Pollock larger then 50 cm showed limited migratory behavior. Pollock may benefit from northward feeding migrations because of the changes in temperature, zooplankton production, and light conditions. Ongoing climate changes may affect pollock distribution and create new challenges for pollock management in the EBS.
Resumo:
Data from ichthyoplankton surveys conducted in 1972 and from 1977 to 1999 (no data were collected in 1980) by the Alaska Fisheries Science Center (NOAA, NMFS) in the western Gulf of Alaska were used to examine the timing of spawning, geographic distribution and abundance, and the vertical distribution of eggs and larvae of flathead sole (Hippoglossoides elassodon). In the western Gulf of Alaska, flathead sole spawning began in early April and peaked from early to mid-May on the continental shelf. It progressed in a southwesterly direction along the Alaska Peninsula where three main areas of flathead sole spawning were indentified: near the Kenai Peninsula, in Shelikof Strait, and between the Shumagin Islands and Unimak Island. Flathead sole eggs are pelagic, and their depth distribution may be a function of their developmental stage. Data from MOCNESS tows indicated that eggs sink near time of hatching and the larvae rise to the surface to feed. The geographic distribution of larvae followed a pattern similar to the distribution of eggs, only it shifted about one month later. Larval abundance peaked from early to mid-June in the southern portion of Shelikof Strait. Biological and environmental factors may help to retain flathead sole larvae on the continental shelf near their juvenile nursery areas.