154 resultados para PRIOR HISTORY
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Pollen from the upper 2.75 m of a core taken 200 km west of the Golfo de Guayaquil, Ecuador (Trident 163-13, 3° S, 84° W, 3,000 m water depth) documents changes in Andean vegetation and climate of the Cordillera Occidental for ~17,000 years before and after the last glacial maximum.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The history of the El Nino phenomena is recorded in both the fluvial and coastal sediments of northern Peru. The fluvial record was presented at the 1987 PACLIM Workshop and is discussed in detail elsewhere (Wells, 1987). However, the number of radiocarbon dated El Nino events has increased since Wells (1987) was published; this data is presented in Table 1.
Resumo:
Thirty-six years ago, NOAA’s National Marine Fisheries Service began research on how to reduce mortality of sea turtles, Chelonioidea, in shrimp trawls. As a result of efforts of NMFS and many stakeholders, including domestic and foreign fishermen, environmentalists, Sea Grant agents, and government agencies, many trawl fisheries around the world use a version of the turtle excluder device (TED). This article chronicles the contributions of NMFS to this effort, much of which occurred at the NMFS Mississippi Laboratories in Pascagoula. Specifically, it summarizes the impetus for and results of major developments and little known events in the TED research and discusses how these influenced the course of subsequent research.
Resumo:
The Virginia Aquarium & Marine Science Center Foundation’s Stranding Response Program (VAQS) was awarded a grant in 2008 to conduct life history analysis on over 10 years of Tursiops truncatus teeth and gonad samples from stranded animals in Virginia. A major part of this collaborative grant included a workshop involving life historians from Hubbs-Sea World Research Institute (HSWRI), NOS, Texas A & M University (TAMU), and University of North Carolina Wilmington (UNCW). The workshop was held at the NOAA Center for Coastal Environmental Health & Biomolecular Research in Charleston, SC on 7-9 July 2009. The workshop convened to 1) address current practices among the groups conducting life history analysis, 2) decide on protocols to follow for the collaborative Prescott grant between VAQS and HSWRI, 3) demonstrate tissue preparation techniques and discuss shortcuts and pitfalls, 4) demonstrate data collection from prepared testes, ovaries, and teeth, and 5) discuss data analysis and prepare an outline and timeline for a future manuscript. The workshop concluded with discussions concerning the current collaborative Tursiops Life History Prescott grant award and the beginnings of a collaborative Prescott proposal with members of the Alliance of Marine Mammal Parks and Aquariums to further clarify reproductive analyses. This technical memorandum serves as a record of this workshop.
Resumo:
The Indo-Pacific lionfishes, Pterois miles and P. volitans, are now established along the Southeast U.S. and Caribbean and are expected to expand into the Gulf of Mexico and Central and South America. Prior to this invasion little was known regarding the biology and ecology of these lionfishes. I provide a synopsis of chronology, taxonomy, local abundance, reproduction, early life history and dispersal, venomology, feeding ecology, parasitology, potential impacts, and possible control and management strategies for the lionfish invasion. This information was collected by review of the literature and by direct field and experimental study. I confirm the existence of an unusual supraocular tentacle phenotype and suggest that the high prevalence of this phenotype in the Atlantic is not the result of selection, but likely ontogenetic change. To describe the trophic impacts of lionfish, I report a comprehensive assessment of diet that describes lionfish as a generalist piscivore that preys on over 40 species of teleost comprising more than 20 families. Next, I use the histology of gonads to describe both oogenesis and reproductive dynamics of lionfish. Lionfish mature relatively early and reproduce several times per month throughout the entire calendar year off North Carolina and the Bahamas. To investigate predation, an important component of natural mortality, I assessed the vulnerability of juvenile lionfish to predation by native serranids. Juvenile lionfish are not readily consumed by serranids, even after extreme periods of starvation. Last, I used a stage-based, matrix population model to estimate the scale of control that would be needed to reduce an invading population of lionfish. Together, this research provides the first comprehensive assessment on lionfish biology and ecology and explains a number of life history and ecological interactions that have facilitated the unprecedented and rapid establishment of this invasive finfish. Future research is needed to understand the scale of impacts that lionfish could cause, especially in coral reef ecosystems, which are already heavily stressed. This research further demonstrates the need for lionfish control strategies and more rigorous prevention and early detection and rapid response programs for marine non-native introductions.
Resumo:
The life history of the Atlantic sharpnose shark (Rhizoprionodon terraenovae) was described from 1093 specimens collected from Virginia to northern Florida between April 1997 and March 1999. Longitudinally sectioned vertebral centra were used to age each specimen, and the periodicity of circuli deposition was verified through marginal increment analysis and focus-to-increment frequency distributions. Rhizoprionodon terraenovae reached a maximum size of 828 mm precaudal length (PCL) and a maximum age of 11+ years. Mean back-calculated lengths-at-age ranged from 445 mm PCL at age one to 785 mm PCL at age ten for females, and 448 mm PCL at age one to 747 mm PCL at age nine for males. Observed lengthat-age data (estimated to 0.1 year) yielded the following von Bertalanffy parameters estimates: L∞= 749 mm PCL (SE=4.60), K = 0.49 (SE=0.020), and t0= –0.94 (SE=0.046) for females; and L∞= 745 mm PCL (SE = 5.93), K = 0.50 (SE=0.024), and t0= –0.91 (SE = 0.052) for males. Sexual maturity was reached at age three and 611 mm PCL for females, and age three and 615 mm PCL for males. Rhizoprionodon terraenovae reproduced annually and had a gestation period of approximately 11 months. Litter size ranged from one to eight (mean=3.85) embyros, and increased with female PCL.
Resumo:
Indirect estimates of instantaneous natural mortality rate (M) are widely used in stock assessment and fisheries management. They are essentially a form of meta-analysis, in which prior information on M and key life history parameters from a variety of stocks is used to estimate M for the stock in question.
Resumo:
The life history and population dynamics of the finetooth shark (Carcharhinus isodon) in the north-eastern Gulf of Mexico were studied by determining age, growth, size-at-maturity, natural mortality, productivity, and elasticity of vital rates of the population. The von Bertalanffy growth model was estimated as Lt=1559 mm TL (1–e–0.24 (t+2.07)) for females and Lt = 1337 mm TL (1–e–0.41 (t+1.39)) for males. For comparison, the Fabens growth equation was also fitted separately to observed size-at-age data, and the fits to the data were found to be similar. The oldest aged specimens were 8.0 and 8.1 yr, and theoretical longevity estimates were 14.4 and 8.5 yr for females and males, respectively. Median length at maturity was 1187 and 1230 mm TL, equivalent to 3.9 and 4.3 yr for males and females, respectively. Two scenarios, based on the results of the two equations used to describe growth, were considered for population modeling and the results were similar. Annual rates of survivorship estimated through five methods ranged from 0.850/yr to 0.607/yr for scenario 1 and from 0.840/yr to 0.590/yr for scenario 2. Productivities were 0.041/yr for scenario 1 and 0.038/yr for scenario 2 when the population level that produces maximum sustain-able yield is assumed to occur at an instantaneous total mortality rate (Z) equaling 1.5 M, and were 0.071/yr and 0.067/yr, when Z=2 M for scenario 1 and 2, respectively. Mean generation time was 6.96 yr and 6.34 yr for scenarios 1 and 2, respectively. Elasticities calculated through simulation of Leslie matrices averaged 12.6% (12.1% for scenario 2) for fertility, 47.7% (46.2% for scenario 2) for juvenile survival, and 39.7% (41.6% for scenario 2) for adult survival. In all, the finetooth shark exhibits life-history and population characteristics intermediate to those of sharks in the small coastal complex and those from some large coastal species, such as the blacktip shark (Carcharhinus limbatus).
Resumo:
Lengths and ages of sword-fish (Xiphias gladius) estimated from increments on otoliths of larvae collected in the Caribbean Sea, Florida Straits, and off the southeastern United States, indicated two growth phases. Larvae complete yolk and oil globule absorption 5 to 6 days after hatching (DAH). Larvae <13 mm preserved standard length (PSL) grow slowly (~0.3 mm/d); larvae from 13 to 115 mm PSL grow rapidly (~6 mm/d). The acceleration in growth rate at 13 days follows an abrupt (within 3 days) change in diet, and in jaw and alimentary canal structure. The diet of swordfish larvae is limited. Larvae <8 mm PSL from the Caribbean, Gulf of Mexico, and off the southeastern United States eat exclusively copepods, primarily of one genus, Corycaeus. Larvae 9 to 11 mm eat copepods and chaetognaths; larvae >11 mm eat exclusively neustonic fish larvae. This diet indicates that young larvae <11 mm occupy the near-surface pelagia, whereas, older and longer larvae are neustonic. Spawning dates for larvae collected in various regions of the western North Atlantic, along with the abundance and spatial distribution of the youngest larvae, indicate that spawning peaks in three seasons and in five regions. Swordfish spawn in the Caribbean Sea, or possibly to the east, in winter, and in the western Gulf of Mexico in spring. Elsewhere swordfish spawn year-round, but spawning peaks in the spring in the north-central Gulf of Mexico, in the summer off southern Florida, and in the spring and early summer off the southeastern United States. The western Gulf Stream frontal zone is the focus of spawning off the southeastern coast of the United States, whereas spawning in the Gulf of Mexico seems to be focused in the vicinity of the Gulf Loop Current. Larvae may use the Gulf of Mexico and the outer continental shelf off the east coast of the United States as nursery areas. Some larvae may be transported northward, but trans-Atlantic transport of larvae is unlikely.
Resumo:
Fishes are widely known to aggregate around floating objects, including flotsam and fish aggregating devices (FADs).The numbers and diversity of juvenile fishes that associated with floating objects in the nearshore waters of the eastern tropical Pacific were recording by using FADs as an experimental tool. The effects of fish removal, FAD size, and the presence or absence of a fouling community at the FAD over a period of days, and the presence of prior recruits over a period of hours were evaluated by using a series of experiments. The removal of FAD-associated fish assemblages had a significant effect on the number of the dominant species (Abudefduf troschelii) in the following day’s assemblage compared to FADs where the previous day’s assemblage was undisturbed; there was no experimental effect on combined species totals. Fishes do, however, discriminate among floating objects, forming larger, more species-rich assemblages around large FADs compared to small ones. Fishes also formed larger assemblages around FADs possessing a fouling biota versus FADs without a fouling biota, although this effect was also closely tied to temporal factors. FADs enriched with fish accumulated additional recruits more quickly than FADs that were not enriched with fish and therefore the presence of prior recruits had a strong, positive effect on subsequent recruitment. These results suggest that fish recruitment to floating objects is deliberate rather than haphazard or accidental and they sup-port the hypothesis that flotsam plays a role in the interrelationship between environment and some juvenile fishes. These results are relevant to the use of FADs for fisheries, but emphasize that further research is necessary for applied interests.
Resumo:
Snoek (Thyrsites atun) is a valuable commercial species and an important predator of small pelagic fishes in the Benguela ecosystem. The South African population attains 50% sexual maturity at a fork length of ca.73.0 cm (3 years). Spawning occurs offshore during winter−spring, along the shelf break (150–400 m) of the western Agulhas Bank and the South African west coast. Prevailing currents transport eggs and larvae to a primary nursery ground north of Cape Columbine and to a secondary nursery area to the east of Danger Point; both shallower than 150 m. Juveniles remain on the nursery grounds until maturity, growing to between 33 and 44 cm in the first year (3.25 cm/month). Onshore– offshore distribution (between 5- and 150-m isobaths) of juveniles is deter-mined largely by prey availability and includes a seasonal inshore migration in autumn in response to clupeoid recruitment. Adults are found through-out the distribution range of the species, and although they move offshore to spawn—there is some southward dispersion as the spawning season progresses—longshore movement is apparently random and without a seasonal basis. Relative condition of both sexes declined dramatically with the onset of spawning. Mesenteric fat loss was, however, higher in females, despite a greater rate of prey consumption. Spatial differences in sex ratios and indices of prey consumption suggest that females on the west coast move inshore to feed between spawning events, but that those found farther south along the western Agulhas Bank remain on the spawning ground throughout the spawning season. This regional difference in female behavior is attributed to higher offshore abundance of clupeid prey on the western Agulhas Bank, as determined from both diet and rates of prey consumption.
Resumo:
The problem of bias in female petrale sole age and length-at-maturity relationships caused by sampling from spawning aggregations was investigated. Samples were collected prior to aggregation, and histological methods were used to determine maturity status. Mature and immature fish were classified by inspecting oocytes for the presence of yolk in September, when substantial divergence in yolked and unyolked oocyte diameters had been observed. Comparison of macroscopic and microscopic assessment of maturity showed that maturity status cannot be determined accurately by using macroscopic inspection during the summer. Female petrale sole from the central Oregon coast were 50% mature at 33 cm and 5 years of age. Comparison of data from our study with data used in recent petrale sole stock assessments showed that both sampling bias and the use of samples from sea-sons when status cannot be accurately determined have likely caused errors in fitted maturity relationships.