139 resultados para ICE SHELF
Resumo:
Studies were undertaken to evaluate the quality changes in freshwater giant prawn, Macrobrachium rosenbergii during various storage conditions of handling and preservation and producing safe and quality products. The samples kept in ice immediately after catch with head-on and head-less condition were found to be acceptable for 6 days and 7 days, respectively. Delaying of icing considerably shortened the shelf-life. The pH value increased from 6.36 to 8.0 after 10 days in ice. The initial average TVB-N value of sample increased from below 10 mg/100 g to 25 mg/100 g with the lapse of storage period. The Ca++ ATPase activity in presence of 0.1M KCl slightly decreased at the end of 10 days of ice storage. Immediately after harvest, initial aerobic plate count (APC) was 2.88x10^6 CFU/g which gradually increased to 1.12x10^8 CFU/g after 6 days in ice storage and showed early signs of spoilage. Initial bacterial genera in the prawn iced at 0 hours were comprised of Coryneform (22.21 %), Bacillus (7.40%), Micrococcus (11.11 %), Achromobacter (48.14%), Flavobacterium/Cytophaga (7.40%), Pseudomonas (3.70%) and Aeromonas (3.70%). During ice storage Coryneforms and Bacillus were always dominating along with less prominent ones - Micrococcus, Achromobacter and Flavobacterium. Studies were conducted on the stability of myofibrillar protein of M. rosenbergii under different storage and pH conditions. The influence of a wide range of pH on the remaining Ca++ ATPase activity of M. rosenbergii muscle myofibrils after storage at -20°C for 2 days, at 0°C for 2 days and at 35°C for 30 minutes demonstrated that ATPase activities were lower in acidic and alkaline pH regions and the activity remained relatively high. Mg++ ATPase activities both in presence and absence of Ca++ remained high at neutral pH compared to those of acidic and alkaline region. The solubility of myofibrillar protein decreased gradually both in acidic and alkaline pH regions. The study also examined the bacteriological quality of freshly harvested M. rosenbergii, pond sediment and pond water from four commercial freshwater prawn farms at Fulpur and Tarakanda upazilas in the district of Mymensingh. The study included aerobic plate count (APC), total coliform count, detection, isolation and identification of suspected public health hazard bacteria and their seasonal variation, salt tolerance test, antibiotic sensitivity test of the isolates and washing effect of chlorinated water on the bacterial load in the prawn samples. APC in sediment soil and water of the farm and gill and hepatopancreas of freshly harvested prawns varied considerably among the farms and between summer and winter season. The range of coliform count in water, gill and hepatopancreas ranged between 6 - 2.8x10^2 CFU/ml, 1.2x10^2 - 3.32x10^2 CFU/g and 1.43x10^2 - 3.89 x10^3 CFU/g, respectively. No coliform was detected in pond sediment sample. Suspected health hazard bacteria isolated and identified from pond sediment, water, gill and hepatopancreas included Streptococcus, Bacillus, Escherichia coli, Klebsialla, Salmonella, Staphylococcus, Pseudomonas and Aeromonas. Bacillus, Salmonella and Staphyloccus [sic], and were found to be highly salt tolerant and capable of growing at 10% NaCl. The antibiotic discs with different concentration of antibiotics were used for the sensitivity test. The organisms were found to be most sensitive against Tetracyclin and Gentamycin.
Resumo:
Freshly harvested milk fish (Chanos chanos) were stored in crushed ice and their storage life estimated by following biochemical, bacteriological and organoleptic changes occurring during storage. Samples of the fish were withdrawn at various intervals of storage, quick frozen, glazed and held in frozen storage at-l8°C. Shelf-life in frozen storage was determined in relation to period of ice storage prior to freezing by determining biochemical and organoleptic characteristics up to 30 weeks.
Resumo:
The influence of different pre-freezing ice storage periods on the biochemical and organoleptic qualities of Indian oil sardines (Sardinella longiceps) in the individual quick frozen (IQF) and block frozen (BF) forms and frozen storage at temperatures of -12°C and -23°C was studied. The shelf-life of the sardines varied between 24 and 2 weeks for samples iced for 0 to 5 days prior to freezing. The deterioration in quality was accompanied by considerable increase in the peroxide value (PV) and free fatty acid (FFA) content and decrease in salt extractability of the proteins. These changes were more rapid at -12°C than at -23°C. BF sardines appeared to be better than IQF samples with respect to the biochemical changes although the differences in overall organoleptic quality were not significant.
Resumo:
Effect of incorporating chlorotetracycline (CTC) in ice up to 5 ppm level on the keeping quality of prawns has been studied. A shelf life extension by nearly six days is obtained for the CTC-iced sample over the control. The headless prawns absorbed greater amounts of CTC than whole prawns during storage in CTC-ice. Traces of the antibiotic are found in the muscle of the CTC-iced prawns even after cooking for one hour. The cause of destruction of CTC when used for prawn preservation is discussed.
Resumo:
Tilapia from fresh water and brackish water-sources behaved differently during iced and frozen storage. The former showed an ice storage shelf life of about 13 days while the latter showed signs of spoilage beyond 10 days. In their respective freezing characteristics, the samples from the two sources exhibited far more significant variations. The fresh water type iced for 13 days preserved well for over 24 weeks when frozen and kept at a temperature of -18° C, while the brackish water variety held in ice for 10 days and subsequently frozen gave a shelf life of only 8 weeks under similar conditions.
Resumo:
The possible factors leading to the loss of flavour and general quality of crab during freezing and frozen storage have been studied. The preprocess ice storage condition of the raw material was found to be one such important factor while the fresh frozen crab meat remained in good organoleptic condition for about 51 weeks at -23°C, the 7 days iced material held frozen was found to have a shelf life of about 21 weeks. The fall in myofibrillar protein noted during frozen storage together with the loss of myosin ATPase activity correlated well with the loss of organoleptic qualities.
Resumo:
The changes in chemical, bacteriological and organoleptic qualities of mussels and clams during freezing and subsequent frozen storage have been studied in relation to the holding time in ice prior to freezing and the shelf-life of the product is determined.
Resumo:
Quality deterioration of seer held directly in contact with ice, in different forms, fillets and chunks, and of chunks held in ice but without direct contact, was studied for a period of 15 days. While the chunks held out of contact with ice were acceptable up to 13 days based on organoleptic evaluations, the chunks and fillets held in direct contact with ice were acceptable only up to 10 days. The order of preference of the samples at any interval of ice storage was chunks held out of contact with ice>chunks held directly in ice>fillets held directly in ice. The changes in the chemical quality of these samples were also in the same order, the deterioration being maximum in fillets and least in chunks kept out of contact with ice.
Resumo:
Radiation pasteurisation enhances the shelf stability of trash fish varieties and enables the grading of fish depending upon the freshness quality. As against the ice-chilled fish which spoils within 8-10 days, exposure to 100 Krad and storage at ice temperature helps in maintaining the quality in Grade I, II or III up to 10, 20 or 25 days respectively. The improvement in quality thus provides scope for greater utilisation of trash fish for various secondary products.
Resumo:
Skin-on fillets of spotted seer were frozen individually with different pre-freezing ice storage periods, and stored at -23°C and -l0°C. The frozen storage shelf life was evaluated, with respect to holding time in ice prior to freezing, by examining the extent of oxidative rancidity, protein denaturation, organoleptic changes etc. Fillets with pre-freezing ice storage periods of 0, 3, 5 and 7 days had frozen storage shelf-life of 32, 24, 20 and 16 weeks respectively at -23°C. The fillets stored in ice for more than 7 days are unsuitable for further processing. Storage temperature greatly affected keeping quality of frozen fillets. Freshly frozen fillets stored at -10°C became unpalatable at 16-20 weeks as compared to 28-32 weeks for the fillets stored at -23°C.
Resumo:
The paper presents results of studies on the effect of seasonal variations in the fat content on the quality and shelf life of dry cured, pickle cured and smoke cured oil sardines. The merits and defects of each method of curing during different seasons are discussed.
Resumo:
Perch (Pagrus spinifer), one of the most abundantly available fishes of Gujarat coast, was subjected to a detailed study for assessing its storage life in ice and amenability of the iced fish for canning. Changes in the salt soluble nitrogenous material and myosin content of the iced fish showed good correlation with the changes in the organoleptic and physical qualities. The fish was found to have a storage life of 9 days in ice and samples stored up to 7 days were suitable for canning.
Resumo:
The changes in the major protein nitrogen fractions of two commercially important fishes of Indian waters, viz., mackerel (Rastrelliger kanagurta) and lactarius (Lactarius lactarius), during storage in ice are reported. The significance of the findings is discussed in comparison with the results of a similar study on two species of marine prawns and oil sardine, reported earlier.
Resumo:
The native flora of oil sardine and mackerel consisting of Pseudomonas spp; Moraxella spp., Acinetobacter spp. and Vibrio spp. underwent significant changes during ice storage. At the time of spoilage, Pseudomonas spp. were predominant. CTC treatment significantly reduced the Pseudomonas spp. in the initial stages of storage; but later Pseudomonas spp. reasserted and constituted the bulk of the spoilage flora. In prawn, the native flora was comprised of Pseudomonas spp., Acinetobacter spp., Moraxella spp. and Vibrio spp. At the time of spoilage a heterogeneous flora, consisting of Pseudomonas spp; Moraxella spp. and Acinetobacter spp. predominated. CTC treatment significantly changed the flora of prawns. During spoilage, Pseudomonas predominated in CTC treated prawns.
Resumo:
The native flora of fresh oil sardine and mackerel consisted mainly of Pseudomonas spp., Moraxella spp., Acinetobacter spp. and Vibrio spp. During spoilage in ice, nearly 75% of their bacterial flora belonged to Pseudomonas spp. alone. But Na sub(2) EDTA treatment reduced the proportion of Pseudomonas spp. considerably and the major bacterial groups at the time of spoilage were Moraxella spp. and Acinetobacter spp. In the case of fresh prawn, the native flora was constituted by Pseudomonas spp., Moraxella spp., Acinetobacter spp. and Vibrio spp. At the time of spoilage of prawn in ice, Moraxella spp. and Acinetobacter spp. predominated, together constituting 74% of the total population. Na sub(2) EDTA treatment did not alter significantly the spoilage flora of prawns. Moraxella spp. and Acinetobacter spp. accounted for 86% of the spoilage flora in ice storage of Na sub(2) EDTA treated prawns.