301 resultados para Elm Grove
Resumo:
Latin America has been shown to be susceptible to climatic anomalies during El Niño/Southern Oscillation (ENSO) events (eg, Aceituno 1988; Ropelewshi and Halpert 1987; Kiladis and Diaz 1989). While these studies have emphasized ENSO-related rainfall and temperature anomalies over Central and South America, less work has been done on the climatic effects of ENSO over the Mexican region. In this study we are investigating interannual and intraseasonal fluctuation in temperature and precipitation over the southwestern United States and Mexico since the turn of the century. We are particularly interested in the effects of ENSO on the interannual variability over this region. This report focuses on the association between ENSO and interannual variability of precipitation over Mexico.
Resumo:
We have applied a number of objective statistical techniques to define homogeneous climatic regions for the Pacific Ocean, using COADS (Woodruff et al 1987) monthly sea surface temperature (SST) for 1950-1989 as the key variable. The basic data comprised all global 4°x4° latitude/longitude boxes with enough data available to yield reliable long-term means of monthly mean SST. An R-mode principal components analysis of these data, following a technique first used by Stidd (1967), yields information about harmonics of the annual cycles of SST. We used the spatial coefficients (one for each 4-degree box and eigenvector) as input to a K-means cluster analysis to classify the gridbox SST data into 34 global regions, in which 20 comprise the Pacific and Indian oceans. Seasonal time series were then produced for each of these regions. For comparison purposes, the variance spectrum of each regional anomaly time series was calculated. Most of the significant spectral peaks occur near the biennial (2.1-2.2 years) and ENSO (~3-6 years) time scales in the tropical regions. Decadal scale fluctuations are important in the mid-latitude ocean regions.
Resumo:
As California entered its sixth consecutive year of drought, the onset of a positive sea surface temperature anomaly in the equatorial Pacific and other indicators of a developing ENSO event were observed. This brought the following question from the media, water officials, and the public: What effect will El Niño have on the current rainfall season in general and on the intraseasonal distribution of rain in particular? To answer the question, the historical San Francisco rainfall record was examined in relationship to previous ENSO events.
Resumo:
Studies by Enfield and Allen (1980), McLain et al (1985), and others have shown that anomalously warm years in the northern coastal California Current correspond to El Niño conditions in the equatorial Pacific Ocean. Ocean model studies suggest a mechanical link between the northern coastal California Current and the equatorial ocean through long waves that propagate cyclonically along the ocean boundary (McCreary 1976; Clarke 1983; Shriver et al 1991). However, distinct observational evidence of such an oceanic connection is not extensive. Much of the supposed El Niño variation in temperature and sea level data from the coastal California Current region can be associated with the effects of anomalously intense north Pacific atmospheric cyclogenesis, which is frequently augmented during El Niño years (Wallace and Gutzler 1981; Simpson 1983; Emery and Hamilton 1984). This study uses time series of ocean temperature data to distinguish between locally forced effects, initiated by north Pacific atmospheric changes, and remotely forced effects, initiated by equatorial Pacific atmospheric changes related to El Niño events.
Resumo:
We describe the climatology of the western United States as seen from two 1-month perspectives, January and July 1988, of the National Meteorological Center large-scale global analysis, the Colorado State University Regional Atmospheric Modeling System (RAMS), and various station observation sets. An advantage of the NMC analysis and the RAMS is that they provide a continuous field interpolation of the meteorological variables. It is more difficult to describe spatial meteorological fields from the available sparse station networks. We assess accuracy of the NMC analysis and RAMS by finding differences between the analysis, the model, and station values at the stations. From these comparisons, we find that RAMS has much more well-developed mesoscale circulation, especially in the surface wind field. However, RAMS climatological and transient fields do not appear to be substantially closer than the larger-scale analysis to the station observations. The RAMS model does provide other meteorological variables, such as precipitation, which are not readily available from the archives of the global analysis. Thus, RAMS could, at the least, be a tool to augment the NMC large-scale analyses.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The latest in a series of unusual winters affected the western United States during 1991-92. This report is primarily concerned with the 6 to 8 coolest months, with some consideration of the adjacent summer months. ... Much of the winter was characterized by "split flow" west of North America. As it approached the West Coast, the jet stream frequently diverged into a northern branch toward Panhandle Alaska and a second southern branch that dived south along the California coast and then eastward along the US-Mexican border. Repeatedly, storms approaching the West Coast were stretched north-to-south, losing their organization in the process.
Resumo:
We report a Monte Carlo representation of the long-term inter-annual variability of monthly snowfall on a detailed (1 km) grid of points throughout the southwest. An extension of the local climate model of the southwestern United States (Stamm and Craig 1992) provides spatially based estimates of mean and variance of monthly temperature and precipitation. The mean is the expected value from a canonical regression using independent variables that represent controls on climate in this area, including orography. Variance is computed as the standard error of the prediction and provides site-specific measures of (1) natural sources of variation and (2) errors due to limitations of the data and poor distribution of climate stations. Simulation of monthly temperature and precipitation over a sequence of years is achieved by drawing from a bivariate normal distribution. The conditional expectation of precipitation. given temperature in each month, is the basis of a numerical integration of the normal probability distribution of log precipitation below a threshold temperature (3°C) to determine snowfall as a percent of total precipitation. Snowfall predictions are tested at stations for which long-term records are available. At Donner Memorial State Park (elevation 1811 meters) a 34-year simulation - matching the length of instrumental record - is within 15 percent of observed for mean annual snowfall. We also compute resulting snowpack using a variation of the model of Martinec et al. (1983). This allows additional tests by examining spatial patterns of predicted snowfall and snowpack and their hydrologic implications.
Resumo:
The effect of decreasing frost frequency on desert vegetation was documented in Grand Canyon by replication of historical photographs. Although views by numerous photographers of Grand Canyon have been examined, 400 Robert Brewster Stanton and Franklin A. Nims views taken in the winter of 1889-1890 provide the best information on recent plant distribution. In Grand Canyon, where grazing is limited by the rugged topography, vegetation dynamics are controlled by climate and by demographic processes such as seed productivity, recruitment, longevity and mortality. The replicated photographs show distribution and abundance of several species were limited by severe frost before 1889. Two of these, brittlebush (Encelia farinosa) and barrel cactus (Ferocactus cylindraceus), have clearly expanded their ranges up-canyon and have increased their densities at sites where they were present in 1890. In 1890, brittlebush was present in warm microhabitats that provided refugia from frost damage. Views showing desert vegetation in 1923 indicate that Encelia expanded rapidly to near its current distribution between 1890 and 1923, whereas the expansion of Ferocactus occurred more slowly. The higher frequency of frost was probably related to an anomalous increase in winter storms between 1878 (and possibly 1862) and 1891 in the southwestern United States.
Resumo:
A distinct, 1- to 2-cm-thick flood deposit found in Santa Barbara Basin with a varve-date of 1605 AD ± 5 years testifies to an intensity of precipitation that remains unmatched for later periods when historical or instrumental records can be compared against the varve record. The 1605 AD ± 5 event correlates well with Enzel's (1992) finding of a Silver Lake playa perennial lake at the terminus of the Mojave River (carbon-14-dated 1560 AD ± 90 years), in relative proximity to the rainfall catchment area draining into Santa Barbara Basin. According to Enzel, such a persistent flooding of the Silver Lake playa occurred only once during the last 3,500 years and required a sequence of floods, each comparable in magnitude to the largest floods in the modern record. To gain confidence in dating of the 1605 AD ± 5 event, we compare Southern California's sedimentary evidence against historical reports and multi-proxy time-series that indicate unusual climatic events or are sensitive to changes in large-scale atmospheric circulation patterns. The emerging pattern supports previous suggestions that the first decade of the 17th century was marked by a rapid cooling of the Northern Hemisphere, with some indications for global coverage. A burst of volcanism and the occurrence of El Nino seem to have contributed to the severity of the events. The synopsis of the 1605 AD ± 5 years flood deposit in Santa Barbara Basin, the substantial freshwater body at Silver Lake playa, and much additional paleoclimatic, global evidence testifies for an equatorward shift of global wind patterns as the world experienced an interval of rapid, intense, and widespread cooling.
Resumo:
Orbinia johnsoni were studied from a small sandy beach near Mussel Pt., Pacific Grove, California, where they are most abundant at low tide levels in fine sand. They were found to have a mean length of 190 mm. The orbiniids were found with their guts the fullest during incoming to high tides. It is plausible that this is when they are feeding. It takes about 3 to 3.5 hours for food to travel through the length fo the gut. The orbiniids eat 93 percent sand and seven percent organic detritus. Special note should be taken that some food selectivity appears to be involved and that high percentages of organic matter in the feces are found in worms collected during low, outgoing tides. Evidence suggests that the worms are bottom feeders, not coming to the surface to feed.
Resumo:
As one facet of an effort to tie the pollen record of central Gulf of California deep cores to modern analogs, pollen was analyzed in the uppermost 150-200 years of varved core 7807-1410 taken nearby. Sampling at 2- to 8-year resolution yielded a noncomplacent record, suggesting pollen in these sediments may be a potential high resolution proxy record of short-term climatic events. The pollen spectrum as a whole matches that of upper-most DSDP Site 480 (means of all samples). Lack of a ratio or influx shift following damming of local rivers and a surplus of low-spine Compositae pollen relative to mainland sites support Baumgartner's theory that terrigenous influx to the site is largely aeolian and also suggest that a significant fraction of the pollen influx may come from Baja California.
Resumo:
In 1984, a workshop was held on "climatic variability of the eastern North Pacific and western North America." From it has emerged an annual series of workshops held each spring at the Asilomar Conference Center, Monterey Peninsula, California. These annual gatherings have come to be called PACLIM (Pacific Climate) Workshops, reflecting broad interests in the climatologies associated with the Pacific Ocean. Participants in the six workshops that have convened since 1984 have included atmospheric scientists, hydrologists, geologists, glaciologists, oceanographers, limnologists, and both marine and terrestrial biologists.
Resumo:
The 1992 PACLIM meeting featured the Long-Term Ecological Research (LTER) program, sponsored by the National Science Foundation. Ranging from hot to cold and wet to dry climatic regimes, these 18 sites are attempting to understand the web of relationships in different locations as communities evolve over time scales of years to decades to centuries. During this time they are subject to external forcings, including those that vary smoothly and somewhat predictably, like the seasons, upon which are superimposed random "shocks" of various magnitudes.
Resumo:
Spawning behavior and external features of the larval development were studied in the chitons Mopalia muscosa and M. lignosa during the months of April-June, 1974, at Pacific Grove, California. ... The sequence of events in the development of the two species in the same, though some differences in timing exist.