174 resultados para Ecological Practices
Resumo:
This document is intended for use by scientists and other citizens concerned with the ecological condition of estuaries, as well as by managers and lawmakers interested in the sustained use of estuaries for commercial and recreational purposes. It also addresses public concerns about the aesthetic quality of coastal areas vital to tourism and recreation. By producing this report on the ecological condition of estuaries in the Gulf of Mexico, we have taken one step in assessing the health of this environmental resource. We have produced an environmental report card to be used as a guide in the evaluation of management decisions and research directions. This report is organized in three parts: (1) an introduction that gives background information on the Gulf of Mexico, estuarine ecology, and the factors that impact estuaries in the gulf, (2) the main section on priority ecological indicators used to measure the condition of estuaries in the gulf and (3) an ecological report card that summarizes the data on ecological indicators and provides a rating of the condition of estuaries in each gulf state and for gulf estuaries overall. Many of the ratings were based on the percent area of estuaries in each state exhibiting degraded or adverse levels of an indicator.
Resumo:
Since the inception of the LTER Program in 1980, climate has been studied at individual LTER sites and an LTER Climate Committee has been responsible for inter-site activities. At individual sites, climate studies support ecological research, emphasize inter-site heterogeneity, and often relate to other national monitoring and research programs. In inter-site work, the Climate Committee has produced protocols for meteorological observations, described and compared climates of the first 11 sites, and raised important issues regarding climate variability and ecosystem response.
Resumo:
Long-term hydrologic studies in the Arctic simply do not exist. Although the Arctic has been identified as an area that is extremely sensitive to climate change, continuous scientific research has been limited to the past seven years. Earlier research was spotty, of short duration, and directed at only one or two hydrologic elements. Immediate future research needs to encompass all the major hydrologic elements, including winter processes, and needs to address the problem of scaling from small to larger areas in hydrologic models. Also, an international program of cooperation between northern countries is needed to build a greater scientific base for monitoring and identifying potential changes wrought by the climate.
Resumo:
We build on recent efforts to standardize maturation staging methods through the development of a field-proof macroscopic ovarian maturity index for Haddock (Melanogrammus aeglefinus) for studies on diel spawning periodicity. A comparison of field and histological observations helped us to improve the field index and methods, and provided useful insight into the reproductive biology of Haddock and other boreal determinate fecundity species. We found reasonable agreement between field and histological methods, except for the regressing and regenerating stages (however, differentiation of these 2 stages is the least important distinction for determination of maturity or reproductive dynamics). The staging of developing ovaries was problematic for both methods partly because of asynchronous oocyte hydration during the early stage of oocyte maturation. Although staging on the basis of histology in a laboratory is generally more accurate than macroscopic staging methods in the field, we found that field observations can uncover errors in laboratory staging that result from bias in sampling unrepresentative portions of ovaries. For 2 specimens, immature ovaries observed during histological examination were incorrectly assigned as regenerating during macroscopic staging. This type of error can lead to miscalculation of length at maturity and of spawning stock biomass, metrics that are used to characterize the state of a fish population. The revised field index includes 3 new macroscopic stages that represent final oocyte maturation in a batch of oocytes and were found to be reliable for staging spawning readiness in the field. The index was found to be suitable for studies of diel spawning periodicity and conforms to recent standardization guidelines.
Resumo:
Ecosystem-based management is one of many indispensable components of objective, holistic management of human impacts on nonhuman systems. By itself, however, ecosystem-based management carries the same risks we face with other forms of current management; holism requires more. Combining single-species and ecosystem approaches represents progress. However, it is now recognized that management also needs to be evosystem-based. In other words, management needs to account for all coevolutionary and evolutionary interactions among all species; otherwise we fall far short of holism. Fully holistic practices are quite distinct from the approaches to the management of fisheries that are applied today. In this paper, we show how macroecological patterns can guide management consistently, objectively, and holistically. We present one particular macroecological pattern with two applications. The first application is a case study of fisheries from the Baltic Sea involving historical data for two species; the second involves a sample of 44 species of primarily marine fish worldwide. In both cases we evaluate historical fishing rates and determine holistic/systemic sustainable single-species fishing rates to illustrate that conventional fisheries management leads to much more extensive and pervasive overfishing than currently realized; harvests are, on average, over twenty-fold too large to be fully sustainable. In general, our approach involves not only the sustainability of fisheries and related resources but also the sustainability of the ecosystems and evosystems in which they occur. Using macroecological patterns accomplishes four important goals: 1) Macroecology becomes one of the interdisciplinary components of management. 2) Sustainability becomes an option for harvests from populations of individual species, species groups, ecosystems, and the entire marine environment. 3) Policies and goals are reality-based, holistic, or fully systemic; they account for ecological as well as evolutionary factors and dynamics (including management itself). 4) Numerous management questions can be addressed.
Resumo:
The mission of NOAA’s National Marine Sanctuary Program (NMSP) is to serve as the trustee for a system of marine protected areas, to conserve, protect, and enhance their biodiversity, ecological integrity, and cultural legacy while facilitating compatible uses. Since 1972, thirteen National Marine Sanctuaries, representing a wide variety of ocean environments, have been established, each with management goals tuned to their unique diversity. Extending from Cape Ann to Cape Cod across the mouth of Massachusetts Bay, Stellwagen Bank National Marine Sanctuary (NMS) encompasses 2,181 square kilometers of highly productive, diverse, and culturally unique Federal waters. As a result of its varied seafloor topography, oceanographic conditions, and high primary productivity, Stellwagen Bank NMS is utilized by diverse assemblages of seabirds, marine mammals, invertebrates, and fish species, as well as containing a number of maritime heritage resources. Furthermore, it is a region of cultural significance, highlighted by the recent discovery of several historic shipwrecks. Officially designated in 1992, Stellwagen Bank became the Nation’s twelfth National Marine Sanctuary in order to protect these and other unique biological, geological, oceanographic, and cultural features of the region. The Stellwagen Bank NMS is in the midst of its first management plan review since designation. The management plan review process, required by law, is designed to evaluate, enhance, and guide the development of future research efforts, education and outreach, and the management approaches used by Sanctuaries. Given the ecological and physical complexity of Stellwagen Bank NMS, burgeoning anthropogenic impacts to the region, and competing human and biological uses, the review process was challenged to assimilate and analyze the wealth of existing scientific knowledge in a framework which could enhance management decision-making. Unquestionably, the Gulf of Maine, Massachusetts Bay, and Stellwagen Bank-proper are extremely well studied systems, and in many regards, the scientific information available greatly exceeds that which is available for other Sanctuaries. However, the propensity of scientific information reinforces the need to utilize a comprehensive analytical approach to synthesize and explore linkages between disparate information on physical, biological, and chemical processes, while identifying topics needing further study. Given this requirement, a partnership was established between NOAA’s National Marine Sanctuary Program (NMSP) and the National Centers for Coastal Ocean Science (NCCOS) so as to leverage existing NOAA technical expertise to assist the Sanctuary in developing additional ecological assessment products which would benefit the management plan review process.
Resumo:
Salt River Bay National Historical Park and Ecological Preserve (hereafter, SARI or the park) was created in 1992 to preserve, protect, and interpret nationally significant natural, historical, and cultural resources (United States Congress 1992). The diverse ecosystem within it includes a large mangrove forest, a submarine canyon, coral reefs, seagrass beds, coastal forests, and many other natural and developed landscape elements. These ecosystem components are, in turn, utilized by a great diversity of flora and fauna. A comprehensive spatial inventory of these ecosystems is required for successful management. To meet this need, the National Oceanic and Atmospheric Administration (NOAA) Biogeography Program, in consultation with the National Park Service (NPS) and the Government of the Virgin Islands Department of Planning and Natural Resources (VIDPNR), conducted an ecological characterization. The characterization consists of three complementary components: a text report, digital habitat maps, and a collection of historical aerial photographs. This ecological characterization provides managers with a suite of tools that, when coupled with the excellent pre-existing body of work on SARI resources, enables improved research and monitoring activities within the park (see Appendix F for a list of data products).
Resumo:
In March-April 2004, the National Oceanic and Atmospheric Administration (NOAA), U.S. Environmental Protection Agency (EPA), and State of Florida (FL) conducted a study to assess the status of ecological condition and stressor impacts throughout the South Atlantic Bight (SAB) portion of the U.S. continental shelf and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Cape Hatteras, North Carolina to West Palm Beach, Florida and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). Conditions of these offshore waters are compared to those of southeastern estuaries, based on data from similar EMAP/NCA surveys conducted in 2000-2004 by EPA, NOAA, and partnering southeastern states (Florida, Georgia, South Carolina, North Carolina, Virginia) (NCA database for estuaries, EPA Gulf Ecology Division, Gulf Breeze FL). Data from a total of 747 estuarine stations are included in this database. As for the offshore sites, the estuarine samples were collected using standard methods and indicators applied in previous coastal EMAP/NCA surveys including the probabilistic sampling design and multiple indicators of water quality, sediment quality, and biological condition (benthos and fish). The majority of the SAB had high levels of DO in near-bottom water (> 5 mg L-1) indicative of "good" water quality. DO levels in bottom waters exceeded this upper threshold at all sites throughout the coastal-ocean survey area and in 76% of estuarine waters. Twenty-one percent of estuarine bottom waters had moderate levels of DO between 2 and 5 mg L-1 and 3% had DO levels below 2 mg L-1. The majority of sites with DO in the low range considered to be hypoxic (< 2 mg L-1) occurred in North Carolina estuaries. There also was a notable concentration of stations with moderate DO levels (2 – 5 mg L-1) in Georgia and South Carolina estuaries. Approximately 58% of the estuarine area had moderate levels of chlorophyll a (5-10 μg L-1) and about 8% of the area had higher levels, in excess of 10 μg L-1, indicative of eutrophication. The elevated chlorophyll a levels appeared to be widespread throughout the estuaries of the region. In contrast, offshore waters throughout the region had relatively low levels of chlorophyll a with 100% of the offshore survey area having values < 5 μg L-1.
Resumo:
In this report we have attempted to evaluate the ecological and economic consequences of hypoxia in the northern Gulf of Mexico. Although our initial approach was to rely on published accounts, we quickly realized that the body of published literature deahng with hypoxia was limited, and we would have to conduct our own exploratory analysis of existing Gulf data, or rely on published accounts from other systems to infer possible or potential effects of hypoxia. For the economic analysis, we developed a conceptual model of how hypoxia-related impacts could affect fisheries. Our model included both supply and demand components. The supply model had two components: (1) a physical production function for fish or shrimp, and (2) the cost of fishing. If hypoxia causes the cost of a unit of fishing effort to change, then this will result in a shift in supply. The demand model considered how hypoxia might affect the quality of landed fish or shrimp. In particular, the market value per pound is lower for small shrimp than for large shrimp. Given the limitations of the ecological assessment, the shallow continental shelf area affected by hypoxia does show signs of hypoxia-related stress. While current ecological conditions are a response to a variety of stressors, the effects of hypoxia are most obvious in the benthos that experience mortality, elimination of larger long-lived species, and a shifting of productivity to nonhypoxic periods (energy pulsing). What is not known is whether hypoxia leads to higher productivity during productive periods, or simply to a reduction of productivity during oxygen-stressed periods. The economic assessment based on fisheries data, however, failed to detect effects attributable to hypoxia. Overall, fisheries landings statistics for at least the last few decades have been relatively constant. The failure to identify clear hypoxic effects in the fisheries statistics does not necessarily mean that they are absent. There are several possibilities: (1) hypoxic effects are small relative to the overall variability in the data sets evaluated; (2) the data and the power of the analyses are not adequate; and (3) currently there are no hypoxic effects on fisheries. Lack of identified hypoxic effects in available fisheries data does not imply that effects would not occur should conditions worsen. Experience with other hypoxic zones around the globe shows that both ecological and fisheries effects become progressively more severe as hypoxia increases. Several large systems around the globe have suffered serious ecological and economic consequences from seasonal summertime hypoxia; most notable are the Kattegat and Black Sea. The consequences range from localized loss of catch and recruitment failure to complete system-wide loss of fishery species. If experiences in other systems are applicable to the Gulf of Mexico, then in the face of worsening hypoxic conditions, at some point fisheries and other species will decline, perhaps precipitously.
Resumo:
Karenia brevis is the dominant toxic red tide algal species in the Gulf of Mexico. It produces potent neurotoxins (brevetoxins [PbTxs]), which negatively impact human and animal health, local economies, and ecosystem function. Field measurements have shown that cellular brevetoxin contents vary from 1–68 pg/cell but the source of this variability is uncertain. Increases in cellular toxicity caused by nutrient-limitation and inter-strain differences have been observed in many algal species. This study examined the effect of P-limitation of growth rate on cellular toxin concentrations in five Karenia brevis strains from different geographic locations. Phosphorous was selected because of evidence for regional P-limitation of algal growth in the Gulf of Mexico. Depending on the isolate, P-limited cells had 2.3- to 7.3-fold higher PbTx per cell than P-replete cells. The percent of cellular carbon associated with brevetoxins (%C-PbTx) was ~ 0.7 to 2.1% in P-replete cells, but increased to 1.6–5% under P-limitation. Because PbTxs are potent anti-grazing compounds, this increased investment in PbTxs should enhance cellular survival during periods of nutrient-limited growth. The %C-PbTx was inversely related to the specific growth rate in both the nutrient-replete and P-limited cultures of all strains. This inverse relationship is consistent with an evolutionary tradeoff between carbon investment in PbTxs and other grazing defenses, and C investment in growth and reproduction. In aquatic environments where nutrient supply and grazing pressure often vary on different temporal and spatial scales, this tradeoff would be selectively advantageous as it would result in increased net population growth rates. The variation in PbTx/cell values observed in this study can account for the range of values observed in the field, including the highest values, which are not observed under N-limitation. These results suggest P-limitation is an important factor regulating cellular toxicity and adverse impacts during at least some K. brevis blooms.
Resumo:
In August 2011, the NOAA National Ocean Service (NOS) conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters of the continental shelf in the northwestern Gulf of Mexico (GOM). The original sampling design included 50 randomly selected sites from the Mississippi River delta to the U.S./Mexican border, representing a total area of 111,162 square kilometers; however, vessel failures and inclement weather precluded sampling at 16 sites in the western-most part of the study region. Sampling was completed at the remaining 34 sites in offshore waters between the Mississippi River delta and Freeport, Texas, representing an estimated 75,591 square kilometers. Field sampling followed standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna, fish tissue contaminant levels). Water depths ranged from 13 – 83 m throughout the study area. About 9 % of the area had sediments composed of sands (< 20 % silt+clay), 47 % of the area was composed of intermediate muddy sands (20 – 80 % silt+clay), and 44 % of the sampled area consisted of mud (> 80 % silt+clay). About 50 % of the area (represented by 17 sites) had sediment total organic carbon (TOC) concentrations < 5 mg/g and all of the sites sampled had levels of TOC < 20 mg/g, well below the range associated with potentially harmful effects to benthic fauna (> 50 mg/g). Surface salinities ranged from 23.4 – 36.5 psu, with salinity generally increasing with distance west of the Mississippi River delta. Bottom salinities varied between 31.1 and 36.5 psu, with lowest values occurring at shallow, inner-shelf stations. Surface-water temperatures varied between 29.8 and 31.5 ºC, while near-bottom waters ranged in temperature from 19.4 – 31 ºC. An index of density stratification (Δσt) indicated that portions of coastal shelf waters in the northwestern GOM at the time of this sampling were strongly stratified. Values of Δσt at 19 of the 34 sites sampled in this study (56 % of the study area) ranged from 2.2 to 12.4, which is within the range considered to be indicative of strong vertical stratification (Δσt > 2). Stratification was strongest close to the Mississippi River delta, and decreased with distance west of the delta.
Resumo:
A study was conducted in June 2009 to assess the current status of ecological condition and potential human-health risks throughout subtidal estuarine waters of the Sapelo Island National Estuarine Research Reserve (SINERR) along the coast of Georgia. Samples were collected for multiple indicators of ecosystem condition, including water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids, fecal coliform bacteria and coliphages), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundance of benthic fauna, fish tissue contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). Use of a probabilistic sampling design facilitated the calculation of statistics to estimate the spatial extent of the Reserve classified according to various categories (i.e., Good, Fair, Poor) of ecological condition relative to established thresholds of these indicators, where available. Overall, the majority of subtidal habitat in the SINERR appeared to be healthy, with over half (56.7 %) of the Reserve area having water quality, sediment quality, and benthic biological condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. None of the stations sampled had one or more indicators in all three categories rated as poor/degraded. While these results are encouraging, it should be noted that one or more indicators were rated as poor/degraded in at least one of the three categories over 40% of the Reserve study area, represented by 12 of the 30 stations sampled. Although measures of fish tissue chemical contamination were not included in any of the above estimates, a number of trace metals, pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) were found at low yet detectable levels in some fish at stations where fish were caught. Levels of mercury and total PCBs in some fish specimens fell within EPA guideline values considered safe, given a consumption rate of no more than four fish meals per month. Moreover, PCB congener profiles in sediments and fish in the SINERR exhibit a relative abundance of higher-chlorinated homologs which are uniquely characteristic of Aroclor 1268. It has been well-documented that sediments and fish in the creeks and marshes near the LCP Chemicals Superfund site, near Brunswick, Georgia, also display this congener pattern associated with Aroclor 1268, a highly chlorinated mixture of PCBs used extensively at a chlor-alkali plant that was in operation at the LCP site from 1955-1994. This report provides results suggesting that the protected habitats lying within the boundaries of the SINERR may be experiencing the effects of a legacy of chemical contamination at a site over 40km away. These effects, as well as other potential stressors associated with increased development of nearby coastal areas, underscore the importance of establishing baseline ecological conditions that can be used to track potential changes in the future and to guide management and stewardship of the otherwise relatively unspoiled ecosystems of the SINERR.
Resumo:
A study was initiated with field work in May 2007 to assess the status of ecological condition and stressor impacts throughout the U.S. continental shelf off South Florida, focusing on soft-bottom habitats, and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Anclote Key on the western coast of Florida to West Palm Beach on the eastern coast of Florida, inclusive of the Florida Keys National Marine Sanctuary (FKNMS), and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — U.S. Environmental Protection Agency’s (EPA) Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). The study was conducted through a large cooperative effort by National Oceanic and Atmospheric Administration (NOAA)/National Centers for Coastal Ocean Science (NCCOS), EPA, U.S. Geological Survey (USGS), NOAA/Oceanic and Atmospheric Research (OAR)/Atlantic Oceanographic and Meteorological Laboratory in Miami, FKNMS, and the Florida Fish and Wildlife Conservation Commission (FWC). The majority of the South Florida shelf had high levels of dissolved oxygen (DO) in near-bottom water (> 5 mg L-1) indicative of “good” water quality.. DO levels in bottom waters exceeded this upper threshold at 98.8% throughout the coastal-ocean survey area. Only 1.2% of the region had moderate DO levels (2-5 mg/L) and no part of the survey area had DO <2.0 mg/L. In addition, offshore waters throughout the region had relatively low levels of total suspended solids (TSS), nutrients, and chlorophyll a indicative of oligotrophic conditions. Results suggested good sediment quality as well. Sediments throughout the region, which ranged from sands to intermediate muddy sands, had low levels of total organic carbon (TOC) below bioeffect guidelines for benthic organisms. Chemical contaminants in sediments were also mostly at low, background levels. For example, none of the stations had chemicals in excess of corresponding Effects-Range Median (ERM) probable bioeffect values or more than one chemical in excess of lower-threshold Effects-Range Low (ERL) values. Cadmium was the only chemical that occurred at moderate concentrations between corresponding ERL and ERM values. Sixty fish samples from 28 stations were collected and analyzed for chemical contaminants. Eleven of these samples (39% of sites) had moderate levels of contaminants, between lower and upper non-cancer human-health thresholds, and ten (36% of sites) had high levels of contaminants above the upper threshold.
Resumo:
The ecological integrity of coral reef ecosystems in the U.S. Caribbean is widely considered to have deteriorated in the last three decades due to a range of threats and stressors from both human and non-human processes Rothenberger 2008, Wilkinson 2008). In response to the threats to Caribbean coral reef ecosystems and other regions around the world, the United States Government authorized the Coral Reef Conservation Act of 2000 to: (1) preserve, sustain, and restore the condition of coral reef ecosystems; (2) promote the wise management and sustainable use of coral reef ecosystems to benefit local communities and the Nation; and (3) develop sound scientific information on the condition of coral reef ecosystems and the threats to such ecosystems. The Act also resulted in the formation of a National Coral Reef Action Strategy and a Coral Reef Conservation Program. The Action Strategy (Goal 2 of Action Theme 1) outlined the importance of monitoring and assessing coral reef health as a mechanism toward reducing many threats to these ecosystems. Monitoring was considered of high importance in addressing impacts from climate change; disease; overfishing; destructive fishing practices; habitat destruction; invasive species; coastal development; coastal pollution; sedimentation/runoff and overuse from tourism. The strategy states that successful coral reef ecosystem conservation requires adaptive management that responds quickly to changing environmental conditions. This, in turn, depends on monitoring programs that track trends in coral reef ecosystem health and reveal patterns in their condition before irreparable harm occurs. As such, monitoring plays a vital role in guiding and supporting the establishment of complex or potentially controversial management strategies such as no-take ecological reserves, fishing gear restrictions, or habitat restoration, by documenting the impacts of gaps in existing management schemes and illustrating the effectiveness of new measures over time. Long-term monitoring is also required to determine the effectiveness of various management strategies to conserve and enhance coral reef ecosystems.