156 resultados para Drinking age
Resumo:
Most assessments of fish stocks use some measure of the reproductive potential of a population, such as spawning biomass. However, the correlation between spawning biomass and reproductive potential is not always strong, and it likely is weakest in the tropics and subtropics, where species tend to exhibit indeterminate fecundity and release eggs in batches over a protracted spawning season. In such cases, computing annual reproductive output requires estimates of batch fecundity and the annual number of batches—the latter subject to spawning frequency and duration of spawning season. Batch fecundity is commonly measured by age (or size), but these other variables are not. Without the relevant data, the annual number of batches is assumed to be invariant across age. We reviewed the literature and found that this default assumption lacks empirical support because both spawning duration and spawning frequency generally increase with age or size. We demonstrate effects of this assumption on measures of reproductive value and spawning potential ratio, a metric commonly used to gauge stock status. Model applications showed substantial sensitivity to age dependence in the annual number of batches. If the annual number of batches increases with age but is incorrectly assumed to be constant, stock assessment models would tend to overestimate the biological reference points used for setting harvest rates. This study underscores the need to better understand the age- or size-dependent contrast in the annual number of batches, and we conclude that, for species without evidence to support invariance, the default assumption should be replaced with one that accounts for age- or size-dependence.
Resumo:
Despite extensive study, it still is not clear whether artificial reefs produce new fish biomass or whether they only attract various species and make them more vulnerable to fishing mortality. To further evaluate this question, the size and age of red snapper (Lutjanus campechanus) were sampled from April to November 2010 at artificial reefs south of Mobile Bay off the coast of Alabama and compared with the age of the artificial reef at the site of capture. Red snapper were collected with hook and line and a fish trap and visually counted during scuba-diver surveys. In the laboratory, all captured red snapper were weighed and measured, and the otoliths were removed for aging. The mean age of red snapper differed significantly across reefs of different ages, with older reefs having older fish. The mean age of red snapper at a particular reef was not related to reef depth or distance to other reefs. The positive correlation between the mean age of red snapper and the age of the reef where they were found supports the contention that artificial reefs in the northern Gulf of Mexico enhance production of red snapper. The presence of fish older than the reef indicates that red snapper are also attracted to artificial reefs.
Resumo:
The purpose of this study was to validate aging results of juvenile Shortfin Mako (Isurus oxyrinchus) by vertebral band counts. Vertebrae of 29 juvenile Shortfin Mako marked with oxytetracycline (OTC) were obtained from tag-recapture activities to determine centrum growth-band deposition. Tagging occurred off southern California from 1996 to 2010, and time at liberty of the 29 sharks ranged from 4 months to 4.4 years (mean=1.3 years). Growth information also was obtained from length-frequency modal analyses (MULTIFAN and MIXDIST) by using a 29-year data set of commercial and research catch data, in addition to a tag-recapture growth model (e.g, the GROTAG model). For vertebrae samples used for age validation, shark size at time of release ranged from 79 to 142 cm fork length (FL) and from 98 to 200 cm FL at recapture. Results from band counts of vertebrae distal to OTC marks indicate 2 band pairs (2 translucent and 2 opaque) are formed each year for Shortfin Mako of the size range examined. Length-frequency analyses identified 3 age class modes. Growth rate estimates from 26.5 to 35.5 cm/year were calculated for the first age-class mode (85 cm FL) and from 22.4 to 28.6 cm/year for the second age-class mode (130 cm FL). Results from the tag-recapture growth model revealed fast growth during time at liberty for tagged fish of the 2 youngest age classes. Collectively, these methods suggest rapid growth of juvenile Shortfin Mako in the southern California study area and indicate biannual deposition of growth bands in vertebrae for the first 5 years.
Resumo:
The modern fishery for Tilefish (Lopholatilus chamaeleonticeps) developed during the 1970s, offshore of southern New England, in the western North Atlantic Ocean. The population quickly became over exploited, with documented declines in catch rates and changes in demographic traits. In an earlier study, median size at maturity (L50) of males declined from 62.6 to 38.6 cm fork length (FL) and median age at maturity (A50) of males declined from 7.1 to 4.6 years between 1978 and 1982. As part of a cooperative research effort to improve the data-limited Tilefish assessment, we updated maturity parameter estimates through the use of an otolith aging method and macroscopic and microscopic evaluations of gonads. The vital rates for this species have continued to change, particularly for males. By 2008, male L50 and A50 had largely rebounded, to 54.1 cm FL and 5.9 years. Changes in female reproductive schedules were less variable among years, but the smallest L50 and youngest A50 were recorded in 2008. Tilefish are dimorphic, where the largest fish are male, and male spawning success is postulated to be socially mediated. These traits may explain the initial rapid decline and the subsequent rebound in male L50 and A50 and less dramatic effects on females. Other factors that likely contribute to the dynamics of maturity parameter estimates are the relatively short period of overfishing and the amount of time since efforts to rebuild this fishery began, as measured in numbers of generations. This study also confirms the gonochoristic sexual pattern of the northern stock, and it reveals evidence of age truncation and relatively high proportions of immature Tilefish in the recent catch.
Resumo:
With the southern New England lobster fishery in distress, lobster fishermen have focused more effort toward harvesting channeled whelk (Busycotypus canaliculatus). However, minimal research has been conducted on the life history and growth rates of channeled whelk. Melongenid whelks generally grow slowly and mature late in life, a characteristic that can make them vulnerable to overfishing as fishing pressure increases. We sampled channeled whelk from Buzzards Bay, Massachusetts, in August 2010 and in July 2011, studied their gonad development by histology, and aged them by examining opercula. Males had a slower growth rate and a lower maximum size than females. Male whelk reached 50% maturity (SM50) at 115.5 mm shell length (SL) and at the age of 6.9 years. Female whelk reached SM50 at 155.3 mm SL and at the age of 8.6 years. With a minimum size limit of 69.9 mm (2.75 in) in shell width, males entered the fishery at 7.5 years, a few months after SM50, but females entered the fishery at 6.3 years, approximately 2 years before SM50. Increased fishing pressure combined with slow growth rates and the inability to reproduce before being harvested can easily constrain the long-term viability of the channeled whelk fishery in Massachusetts.
Resumo:
The Age and Growth Program at the Alaska Fisheries Science Center is tasked with providing age data in order to improve the basic understanding of the ecology and fisheries dynamics of Alaskan fish species. The primary focus of the Age and Growth Program is to estimate ages from otoliths and other calcified structures for age-structured modeling of commercially exploited stocks; however, the program has recently expanded its interests to include numerous studies on topics ranging from age estimate validation to the growth and life history of non-target species. Because so many applications rely upon age data and particularly upon assurances as to their accuracy and precision, the Age and Growth Program has developed this practical guide to document the age determination of key groundfish species from Alaskan waters. The main objective of this manual is to describe techniques specific to the age determination of commercially and ecologically important species studied by the Age and Growth Program. The manual also provides general background information on otolith morphology, dissection, and preparation, as well as descriptions of methods used to measure precision and accuracy of age estimates. This manual is intended not only as a reference for age readers at the AFSC and other laboratories, but also to give insight into the quality of age estimates to scientists who routinely use such data.
Resumo:
Age, growth and mortality of the toadfish, Halobatrachus didactylus, were determined by examination of the whole sagittal otoliths of fish sampled in the Bay of Cádiz (southwestern Spain) from March 1999 to March 2000. A total of 844 specimens (425 males, 416 females, and 3 of indeterminate sex), ranging from 95 to 470 mm in total length were examined. Eighty-nine percent of the otoliths could be read allowing an age estimation. The opaque zone was formed between April and May coincident with the maximum reproductive peak, while the translucent zone formed mainly in summer-fall (June to December). Maximum ages for males and females were 12 and 10 years, respectively. The samples were dominated by 2- to 6-year-old specimens. Males matured at an age of approximately 2 years and females at 3 years. Fish total length and otolith radius were closely related. The von Bertalanffy growth curve was used to describe growth. The parameters were derived from back-calculated length-at-age. Significant differences in the growth parameters were found between sexes. Although the growth analysis revealed that this species is slow-growing, males reached larger sizes than females. Females appeared to experience higher natural mortality rates than males.
Resumo:
Although growth rate and age data are essential for leatherback management, estimates of these demographic parameters remain speculative due to the cryptic life history of this endangered species. Skeletochronological analysis of scleral ossicles obtained from 8 captive, known-age and 33 wild leatherbacks originating from the western North Atlantic was conducted to characterize the ossicles and the growth marks within them. Ages were accurately estimated for the known-age turtles, and their growth mark attributes were used to calibrate growth mark counts for the ossicles from wild specimens. Due to growth mark compaction and resorption, the number of marks visible at ossicle section tips was consistently and significantly greater than the number visible along the lateral edges, demonstrating that growth mark counts should be performed at the tips so that age is not underestimated. A correction factor protocol that incorporated the trajectory of early growth increments was used to estimate the number of missing marks in those ossicles exhibiting resorption, which was then added to the number of observed marks to obtain an age estimate for each turtle. A generalized smoothing spline model, von Bertalanffy growth curve, and size-at-age function were used to obtain estimates of age at maturity for leatherbacks in the western North Atlantic. Results of these analyses suggest that median age at maturation for leatherbacks in this part of the world may range from 24.5 to 29 yr. These age estimates are much greater than those proposed in previous studies and have significant implications for population management and recovery.
Resumo:
This study was undertaken to resolve problems in age determination of sablefish (Anoplopoma fimbria). Aging of this species has been hampered by poor agreement (averaging less than 45%) among age readers and by differences in assigned ages of as much as 15 years. Otoliths from fish that had been injected with oxytetracycline (OTC) and that had been at liberty for known durations were used to determine why age determinations were so difficult and to help determine the correct aging procedure. All fish were sampled from Oregon southwards, which represents the southern part of their range. The otoliths were examined with the aid of image processing. Some fish showed little or no growth on the otolith after eight months at liberty, whereas otoliths from other fish grew substantially. Some fish lay down two prominent hyaline zones within a single year, one in the summer and one in the winter. We classified the otoliths by morphological type and found that certain types are more likely to lay down multiple hyaline zones and other types are likely to lay down little or no zones. This finding suggests that some improvement could be achieved by detailed knowledge of the growth characteristics of the different types. This study suggests that it may not be possible to obtain reliable ages from sablefish otoliths. At the very least, more studies will be required to under-stand the growth of sablefish otoliths.
Resumo:
Age and growth of the night shark (Carcharhinus signatus) from areas off northeastern Brazil were determined from 317 unstained vertebral sections of 182 males (113–215 cm total length [TL]), 132 females (111.5–234.9 cm) and three individuals of unknown sex (169–242 cm). Although marginal increment (MI) analysis suggests that band formation occurs in the third and fourth trimesters in juveniles, it was inconclusive for adults. Thus, it was assumed that one band is formed annually. Births that occur over a protracted period may be the most important source of bias in MI analysis. An estimated average percent error of 2.4% was found in readings for individuals between two and seventeen years. The von Bertalanffy growth function (VBGF) showed no significant differences between sexes, and the model derived from back-calculated mean length at age best represented growth for the species (L∞=270 cm, K=0.11/yr, t0=–2.71 yr) when compared to the observed mean lengths at age and the Fabens’ method. Length-frequency analysis on 1055 specimens (93–260 cm) was used to verify age determination. Back-calculated size at birth was 66.8 cm and maturity was reached at 180–190 cm (age 8) for males and 200–205 cm (age ten) for females. Age composition, estimated from an age-length key, indicated that juveniles predominate in commercial catches, representing 74.3% of the catch. A growth rate of 25.4 cm/yr was estimated from birth to the first band (i.e. juveniles grow 38% of their birth length during the first year), and a growth rate of 8.55 cm/yr was estimated for eight- to ten-year-old adults.
Resumo:
Annual mean fork length (FL) of the Pacific stock of chub mackerel (Scomber japonicus) was examined for the period of 1970–97. Fork length at age 0 (6 months old) was negatively correlated with year-class strength which fluctuated between 0.2 and 14 billion in number for age-0 fish. Total stock biomass was correlated with FL at age but was not a significant factor. Sea surface temperature (SST) between 38–40°N and 141–143°E during April–June was also negatively correlated with FL at age 0. A modified von Bertalanffy growth model that incorporated the effects of population density and SST on growth was well fitted to the observed FL at ages. The relative FL at age 0 for any given year class was maintained throughout the life span. The variability in size at age in the Pacific stock of chub mackerel is largely attributable to growth during the first six months after hatching.
Resumo:
Age and growth of sailfish (Istiophorus platypterus) in waters off eastern Taiwan were examined from counts of growth rings on cross sections of the fourth spine of the first dorsal fin. Length and weight data and the dorsal fin spines were collected monthly at the fishing port of Shinkang (southeast of Taiwan) from July 1998 to August 1999. In total, 1166 dorsal fins were collected, of which 1135 (97%) (699 males and 436 females) were aged successfully. Trends in the monthly mean marginal increment ratio indicated that growth rings are formed once a year. Two methods were used to back-calculate the length of presumed ages, and growth was described by using the standard von Bertalanffy growth function and the Richards function. The most reasonable and conservative description of growth assumes that length-at-age follows the Richards function and that the relationship between spine radius and lower jaw fork length (LJFL) follows a power function. Growth differed significantly between the sexes; females grew faster and reached larger sizes than did males. The maximum sizes in our sample were 232 cm LJFL for female and 221 cm LJFL for male.
Resumo:
From 1995 to 1998, we collected female black rockfish (Sebastes melanops) off Oregon in order to describe their basic reproductive life history and determine age-specific fecundity and temporal patterns in parturition. Female black rockfish had a 50% probability of being mature at 394 mm fork length and 7.5 years-of-age. The proportion of mature fish age 10 or older significantly decreased each year of this study, from 0.511 in 1996 to 0.145 in 1998. Parturition occurred between mid-January and mid-March, and peaked in February. We observed a trend of older females extruding larvae earlier in the spawning season and of younger fish primarily responsible for larval production during the later part of the season. There were differences in absolute fecundity at age between female black rockfish with prefertilization oocytes and female black rockfish with fertilized eggs; fertilized-egg fecundity estimates were considered superior. The likelihood of yolked oocytes reaching the developing embryo stage increased with maternal age. Absolute fecundity estimates (based on fertilized eggs) ranged from 299,302 embryos for a 6-year-old female to 948,152 embryos for a 16-year-old female. Relative fecundity (based on fertilized eggs) increased with age from 374 eggs/g for fish age 6 to 549 eggs/g for fish age 16.
Resumo:
Patterns of distribution and growth were examined for young-of-the-year (YOY) greater amberjack (Seriola dumerili) associated with pelagic Sargassum in the NW Gulf of Mexico. Seriola dumerili were collected off Galveston, Texas, from May to July over a two-year period (2000 and 2001) in both inshore (<15 nautical miles [nmi]) and offshore zones (15−70 nmi). Relative abundance of YOY S. dumerili (32−210 mm standard length) from purse-seine collections peaked in May and June, and abundance was highest in the offshore zone. Ages of S. dumerili ranged from 39 to 150 days and hatching-date analysis indicated that the majority of spawning events occurred from February to April. Average daily growth rates of YOY S. dumerili for 2000 and 2001 were 1.65 mm/d and 2.00 mm/d, respectively. Intra-annual differences in growth were observed; the late-season (April) cohort experienced the fastest growth in both years. In addition, growth was significantly higher for S. dumerili collected from the offshore zone. Mortality was approximated by using catch-curve analysis, and the predicted instantaneous mortality rate (Z) of YOY S. dumerili was 0.0045 (0.45%/d).