108 resultados para DEEP LEVELS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is based on the analysis of 420 planktonic samples of 7 oceanopraphic cruises distributed over the Argentine, Uruguayan and South brasilian continental shelf (SW Atlantic ocean), as well as from some oceanic sectors, adjacent to the continental slope. Vertical hauls were performed in all stations from 100 m depth to surface, except in the Walter Herwig cruise (where vertical hauls were predominantly performed out of slope sectors, between 300 and 500 m depth to surface) and Productividad cruise in which only surface waters were hauled. A list of 27 species are determined, corresponding to 5 families: Iospilidae (3 species), Lopadorrhynchidae (4), Alciopidae (9), Typhloscolecidae (5) and Tomopteridae (6). Larvae and epitokous forms of benthonic species are not taken into account. The genus Iospilus is revised, Pariospilus and Iospilopsis being considered their synonyms; the identity of Pariospilus affinis Viguier is maintained, being transferred to the genus Iospilus. The species Vanadis studeri Apstein is redescribed and its synonymy is established. The taxonomic value of the apical glands of Tomopteris species is discussed and some specimens are found to coincide with T. kefersteini in relation to the mentioned glands. All the species found in this work are described and illustrated, a systematic key being added for their identification. Considering the vertical nature of the hauls, it was not possible to specify the habitats of the different species; for this reason they are grouped as species from subtropical and subantartic areas of influence. The first group, made up of 17 species, shows and evident graduation in its latitudinal distribution, some of them being more restricted in their distribution than the others. The second group, of 4 species, is found south to the tropical convergence, in transitional waters, towards cold sectors. The third group, of 6 species, is found to be distributed all along the continental shelf, in subtropical and subantartic regions, and extending their distribution northwards, possibly related to deep water levels. The general scheme is coincident with the distribution of other planktonic groups (Copepods, Euphausiids). As a general feature, neither coastal nor shelf water specimens of pelagic Polychaeta were found, with exception of T. septentrionalis. A comparison with the results in Tebble's paper (1960) in the southwest Atlantic ocean is made, 12 of our species being coincidently found in the same hydrological area by that author. The drift of the main water masses of the South Atlantic ocean is accepted as a possible cause for the distribution of the pelagic Polychaeta of the southwest Atlantic regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water and bottom sediments of Lake Victoria (Kenya) were analysed for A1, Fe, Mn, Zn, Pb, Cu, Cr and Cd. The total metal concentrations were determined and their mean variations and distributions discussed. The bottom lake waters showed higher concentration levels than the surface waters. The range of values (in mg/l) in the bottom and surface lake waters were as follows: Surface Waters: A1(0.08 - 3.98), Fe(0.09 - 4.01), Mn(0.02 - 0.10). Zn(0.01 -0.07), Pb(0.001- 0.007), Cu(not detected - 0.006), Cr(not detected - 0.004). Bottom Waters: A1(0.1 0 - 6.59), Fe(0.23 - 9.64), Mn(0.04 - 0.39), Zn(0.01- 0.08), Pb(0.002 - 0.009), Cu(not detected - 0.03). Cr(not detected -0.002). River mouths and shallow areas in the lake showed higher total metal concentrations than offshore deeper areas. Apart from natural metal levels, varied urban activities and wastes greatly contribute to the lake metal pollution as shown by high Pb and Zn levels in sediments, around Kisumu and Homa Bay areas. Other comparatively high values and variations could be attributed to the varied geological characteristics of the lake and its sediments. Compared to the established W.H.O (1984) drinking water standards manganese, aluminium and iron levels were above these limits whereas zinc, lead, chromium, copper and cadmium were below.