395 resultados para Blue Hill Bay
Resumo:
The objective of this study was to describe the physical and ichthyological changes occurring seasonally and annually in the south San Francisco Bay, based on the results of 2,561 otter trawl and water samples obtained between February 1973 and June 1982. Temperature varied predictably among seasons in a pattern that varied little between years. Salinity also underwent predictable seasonal changes but the pattern varied substantially between years. The most abundant species of fish were northern anchovy (Engraulis mordax), English sole (Parophrys vetulus), and shiner surfperch (Cymatogaster aggregata). The majority of the common fish species were most abundant during wet years and least abundant in dry years. Numeric diversity was highest during the spring and early summer, with no detectable interannual trends. Species composition changed extensively between seasons and between years, particularly years with extremely high or extremely low freshwater inflows. All the common species exhibited clustered spatial distributions. Such spatial clustering could affect the interpretation of data from estuarine sampling programs. Gobies (Family Gobiidae) were more abundant during flood tides than during ebb tides. English sole were significantly more abundant in shallower areas. Shiner surfperch showed significant differences in abundance between sample areas.(PDF file contains 28 pages.)
Resumo:
This synopsis reviews taxonomy, morphology, distribution, life history, commercial hard and soft shell crab fisheries, physiology, diseases, ecology, laboratory culture methodology, and influences of environmental pollutants on the blue crab, Callinecles sapidus. Over 300 selected, published reports up to and including 1982 are covered. (PDF file contains 45 pages.)
Resumo:
We have developed a hierarchy of target levels, designated to address sustainability, efficiency, and recovery scenarios. Targets were derived from: 1) reported catches and effort in the commercial fishery, 2) statistics from fishery-independent surveys, and 3) knowledge of the biology of blue crab. Targets that are recommended include population sizes, catches, and effort levels, as well as reference fishing mortality rates. They are intended to be conservative and risk-averse. (PDF contains 182 pages)
Resumo:
In this essay, three lines of evidence are developed that sturgeons in the Chesapeake Bay and elsewhere are unusually sensitive to hypoxic conditions: 1. In comparison to other fishes, sturgeons have a limited behavioral and physiological capacity to respond to hypoxia. Basal metabolism, growth, and consumption are quite sensitive to changes in oxygen level, which may indicate a relatively poor ability by sturgeons to oxyregulate. 2. During summertime, temperatures >20 C amplify the effect of hypoxia on sturgeons and other fishes due to a temperature*oxygen "squeeze" (Coutant 1987)- In bottom waters, this interaction results in substantial reduction of habitat; in dry years, nursery habitats in the Chesapeake Bay may be particularly reduced or even eliminated. 3. While evidence for population level effects by hypoxia are circumstantial, there are corresponding trends between the absence of Atlantic sturgeon reproduction in estuaries like the Chesapeake Bay where summertime hypoxia predominates on a system-wide scale. Also, the recent and dramatic recovery of shortnose sturgeon in the Hudson River (4-fold increase in abundance from 1980 to 1995) may have been stimulated by improvement of a large portion of the nursery habitat that was restored from hypoxia to normoxia during the period 1973-1978. (PDF contains 26 pages)
Resumo:
Fish assemblage structure of Maryland's coastal lagoon complex was analyzed for spatial and seasonal patterns for the period 1991-2000. Data was made available by Maryland Department of Natural Resources from their MD Coastal Bays Finfish Survey. Dominant species from separate trawl and wiw surveys included blue crab Callinectes sapidus (erroneously included here as a "fish" due to its dominance and commercial importance), bay anchovy Anchoa mitchilli, spot Leiostomous xanthurus, silver perch Bairdiella ehrysoura, and Atlantic menhaden Brevwrtia tyrannus. Ninety-four fish species were identified in the two surveys, a diversity substantially higher than other survey records for Middle Atlantic Bight estuarine and lagoon systems (richness=26 to 78 species). Total species richness for the trawl survey was highest in Chincoteague and lowest in Assawoman and Sinepuxent. On the other hand, mean richness per tow (-area) and related Shannon Weiner Diversity Index were significantly higher in the northern two bays (Assawoman and Isle of Wight Bays) than in the two southern bays (Chincoteague or Sinepuxent Bays). For the seine survey, effort-adjusted diversity indices were significantly lower for Chincoteague Bay than for the other three bays. Higher relative abundances were observed in the northern bays than in the southern bays. The trawl survey exhibited the lowest catch-per-site in Sinepuxent Bay and the highest in Assawoman Bay. The seine survey had the lowest catch-per-site in Chincoteague Bay while the other three embayments were of similar magnitude. There was clear seasonality in assemblage structure with peak abundance and diversity in the summer compared to other seasons. Blue crabs in particular showed a c. 2-fold decline in relative abundance from early summer to fall, which is likely attributable to harvest removals (i.e., an exploitation rate of c. 50%). Seagrass coverage, although increasing over the course of the 10 year survey, did not have obvious effects on species diversity and abundance across or within the embayments, although it did have positive associations with two important species: bay anchovy and summer flounder Pavalich thys dentatus. Atlantic menhaden were most dominant in Assawoman Bay, which could be related to higher primary production typically observed in this Bay in comparison to the other three. (PDF contains 99 pages)
Resumo:
Blue-green algae (cyanobacteria) have had a profound and unparalled impact on the aquatic environment because of the phenomenon of bloom formation. In many countries, water management is threatened with extensive and persistent noxious blooms of blue-green algae in surface and near-surface mesotrophic and eutrophic waters. In view of this, ecological and physiological factors responsible for blue-green algal dominance are discussed. The implications of cyanobacterial blooms are highlighted and recommendations made to combat this menace
Resumo:
(PDF contains 114 pages)
Resumo:
The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)
Resumo:
Wilmington is situated on the divide of two major watersheds, the Cape Fear River and the Atlantic Intracoastal Waterway. All surface waters in Wilmington drain to one of these two water bodies and are divided into two groups: tidal creeks and Cape Fear River tributaries. Cape Fear River tributaries drain directly to the Cape Fear River and comprise the western portion of Wilmington’s surface waters. Tidal creeks drain directly into the Atlantic Intracoastal Waterway and make up the eastern portion of Wilmington’s surface waters. (PDF contains 4 pages)
Resumo:
The nearshore waters along the Myrtle Beach area are oceanographically referred to as Long Bay. Long Bay is the last in a series of semi-circular indentations located along the South Atlantic seaboard. The Bay extends for approximately 150 km from the Cape Fear River in North Carolina to Winyah Bay in South Carolina and has a number of small inlets (Figure 1). This region of the S.C. coast, commonly referred to as the “Grand Strand,” has a significant tourism base that accounts for a substantial portion of the South Carolina economy (i.e., 40% of the state’s total in 2002) (TIAA 2003). In 2004, the Grand Strand had an estimated 13.2 million visitors of which 90% went to the beach (MBCC 2006). In addition, Long Bay supports a shore-based hook and line fishery comprised of anglers fishing from recreational fishing piers, the beach, and small recreational boats just offshore. (PDF contains 4 pages)
Resumo:
The bay anchovy occurs along the Atlantic and Gulf of Mexico coasts, from Cape Cod, Massachusetts, to Yucatan, Mexico (Hildebrand 1963), except for the Florida Keys where it is apparently absent (Daly 1970). (PDF contains 22 pages)
Resumo:
(PDF contains 24 pages)