357 resultados para Bay Psalm book
Resumo:
In this essay, three lines of evidence are developed that sturgeons in the Chesapeake Bay and elsewhere are unusually sensitive to hypoxic conditions: 1. In comparison to other fishes, sturgeons have a limited behavioral and physiological capacity to respond to hypoxia. Basal metabolism, growth, and consumption are quite sensitive to changes in oxygen level, which may indicate a relatively poor ability by sturgeons to oxyregulate. 2. During summertime, temperatures >20 C amplify the effect of hypoxia on sturgeons and other fishes due to a temperature*oxygen "squeeze" (Coutant 1987)- In bottom waters, this interaction results in substantial reduction of habitat; in dry years, nursery habitats in the Chesapeake Bay may be particularly reduced or even eliminated. 3. While evidence for population level effects by hypoxia are circumstantial, there are corresponding trends between the absence of Atlantic sturgeon reproduction in estuaries like the Chesapeake Bay where summertime hypoxia predominates on a system-wide scale. Also, the recent and dramatic recovery of shortnose sturgeon in the Hudson River (4-fold increase in abundance from 1980 to 1995) may have been stimulated by improvement of a large portion of the nursery habitat that was restored from hypoxia to normoxia during the period 1973-1978. (PDF contains 26 pages)
Resumo:
(PDF contains 114 pages)
Resumo:
The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)
Resumo:
The nearshore waters along the Myrtle Beach area are oceanographically referred to as Long Bay. Long Bay is the last in a series of semi-circular indentations located along the South Atlantic seaboard. The Bay extends for approximately 150 km from the Cape Fear River in North Carolina to Winyah Bay in South Carolina and has a number of small inlets (Figure 1). This region of the S.C. coast, commonly referred to as the “Grand Strand,” has a significant tourism base that accounts for a substantial portion of the South Carolina economy (i.e., 40% of the state’s total in 2002) (TIAA 2003). In 2004, the Grand Strand had an estimated 13.2 million visitors of which 90% went to the beach (MBCC 2006). In addition, Long Bay supports a shore-based hook and line fishery comprised of anglers fishing from recreational fishing piers, the beach, and small recreational boats just offshore. (PDF contains 4 pages)
Resumo:
The bay anchovy occurs along the Atlantic and Gulf of Mexico coasts, from Cape Cod, Massachusetts, to Yucatan, Mexico (Hildebrand 1963), except for the Florida Keys where it is apparently absent (Daly 1970). (PDF contains 22 pages)
Resumo:
(PDF contains 24 pages)
Resumo:
The development of bay wide estimates of recreational harvest has been identified as a high priority by the Chesapeake Bay Scientific Advisory Committee (CBSAC) and by the Chesapeake Bay Program as reflected in the Chesapeake Bay Blue Crab Fishery Management Plan (Chesapeake Bay Program 1996). In addition, the BiState Blue Crab Commission (BBCAC), formed in 1996 by mandate from the legislatures of Maryland and Virginia to advise on crab management, has also recognized the importance of estimating the levels and trends in catches in the recreational fishery. Recently, the BBCAC has adopted limit and target biological reference points. These analyses have been predicated on assumptions regarding the relative magnitude of the recreational and commercial catch. The reference points depend on determination of the total number of crabs removed from the population. In essence, the number removed by the various fishery sectors, represents a minimum estimate of the population size. If a major fishery sector is not represented, the total population will be accordingly underestimated. If the relative contribution of the unrepresented sector is constant over time and harvests the same components of the population as the other sectors, it may be argued that the population estimate derived from the other sectors is biased but still adequately represents trends in population size over time. If either of the two constraints mentioned above is not met, the validity of relative trends over time is suspect. With the recent increases in the human population in the Chesapeake Bay watershed, there is reason to be concerned that the recreational catch may not have been a constant proportion of the total harvest over time. It is important to assess the catch characteristics and the magnitude of the recreational fishery to evaluate this potential bias. (PDF contains 70 pages)
Resumo:
(PDF contains 88 pages.)
Resumo:
Basically this report is an attempt to document trends in oyster recruitment since 1939 and to relate those trends to the actual oyster harvest throughout the Maryland portion of the Chesapeake Bay. It is also hoped that the data as well as the charts compiled in this report will serve as a reference to aid in future studies on Chesapeake Bay oysters. A few if the major biological factors that affect the natural reproduction of the oyster and environmental degradations that may possibly affect oyster reproduction or harvest in the Chesapeake Bay are also briefly discussed. (PDF contains 32 pages)
Resumo:
Royal Visit. The Vice President of Ecuador in the Galápagos. The Galápagos Marine Resources Reserve. The Charles Darwin Foundation Endowment Fund. Repatriation of Captive-bred Land Iguanas. The 1987 Flamingo Census. Experimental Plantations to Provide Building Timber. Visitors and Events at the Charles Darwin Research Station.
Resumo:
Although there have been a number of studies on aquatic conditions and the flora and fauna of Lake Titicaca over many decades, most of this work has been centred on the offshore regions of the main lake. Water quality there has been degrading and abundant growth of Lemna spp. has been developing. Lemna spp., commonly called floating duck-weed or ‘lenteja de agua’ in Puno, occurs perennially in most parts of the inner Puno Bay shore-line. In this article, the authors compare water quality changes over recent decades in shore-line regions of Inner Puno Bay and their possible effects on the distribution, abundance and biomass of Lemna spp..
Resumo:
Details are given of the Institute and its activities, in particular the research projects being undertaken. These include studies on the marine molluscs of Sierra Leone, the cockle fishery, a preliminary investigation on the fouling organisms affecting the raft-cultured oyster populations, larval oyster ecology in relation to oyster culture, preliminary studies on the reproductive cycle of the mangrove oyster (Crassostrea tulipa), and catch composition of fishes taken by beach-seines at Lumley (Freetown). Records of the west African manatee (Trichechus senegalensis) are noted.
Resumo:
(PDF contains 92 pages.)
Resumo:
Conservation problems and programmes. The giant tortoises. The land iguanas. The Hawaiian petrels. The penguins, cormorants and gulls. The fire ants. The control of introduced mammals. Botany. Marine biology. Galapagos cave faunas. Rare twin births of giant tortoises. Visitors and events at the Charles Darwin Research Station (CDRS).