163 resultados para reproductive parameters
Resumo:
Demographic parameters were derived from sectioned otoliths of John’s Snapper (Lutjanus johnii) from 4 regions across 9° of latitude and 23° of longitude in northern Australia. Latitudinal variation in size and growth rates of this species greatly exceeded longitudinal variation. Populations of John’s Snapper farthest from the equator had the largest body sizes, in line with James’s rule, and the fastest growth rates, contrary to the temperature-size rule for ectotherms. A maximum age of 28.6 years, nearly 3 times previous estimates, was recorded and the largest individual was 990 mm in fork length. Females grew to a larger mean asymptotic fork length (L∞) than did males, a finding consistent with functional gonochorism. Otolith weight at age and gonad weight at length followed the same latitudinal trends seen in length at age. Length at maturity was ~72–87% of L∞ and varied by ~23% across the full latitudinal gradient, but age at first maturity was consistently in the range of 6–10 years, indicating that basic growth trajectories were similar across vastly different environments. We discuss both the need for complementary reproductive data in age-based studies and the insights gained from experiments where the concept of oxygen- and capacity-limited thermal tolerance is applied to explain the mechanistic causes of James’s rule in tropical fish species.
Resumo:
Gonadal morphology and reproductive biology of the Black Anglerfish (Lophius budegassa) were studied by examining 4410 specimens collected between June 2007 and December 2010 in the northwestern Mediterranean Sea. Ovaries and testes presented traits common among fishes of the order Lophiiformes. Spawning occurred between November and March. Size at first maturity (L50) was 33.4 cm in total length (TL) for males and 48.2 cm TL for females. Black Anglerfish is a total spawner with group-synchronous oocyte development and determinate fecundity. Fecundity values ranged from 87,569 to 398,986 oocytes, and mean potential fecundity was estimated at 78,929 (standard error of the mean [SE] 13,648) oocytes per kilogram of mature female. This study provides the first description of the presence of 2–3 eggs sharing the same chamber and a semicystic type of spermatogenesis for Black Anglerfish. This new information allows for a better understanding of Black Anglerfish reproduction—knowledge that will be useful for the assessment and management of this species.
Resumo:
The genus Sebastes consists of over 100 fish species, all of which are viviparous and long-lived. Previous studies have presented schemes on the reproductive biology of a single targeted species of the genus Sebastes, but all appear to possess a similar reproductive biology as evidenced by this and other studies. This atlas stages major events during spermatogenesis, oogenesis, and embryogenesis, including atresia, in six species of Sebastes (S. alutus, S. elongatus, S. helvomaculatus, S. polyspinis, S. proriger, and S. zacentrus). Our study suggests that the male reproductive cycle of Sebastes is characterized by 11 phases of testicular development, with 10 stages of sperm development and 1 stage of spermatozoa atresia. Ovarian development was divided into 12 phases, with 10 stages of oocyte development, 1 stage of embryonic development, and 1 stage of oocyte atresia. Embryonic development up to parturition was divided into 33 stages following the research of Yamada and Kusakari (1991). Reproductive development of all six species examined followed the developmental classifications listed above which may apply to all species of Sebastes regardless of the number of broods produced annually. Multiple brooders vary in that not all ova are fertilized and progress to embryos; a proportion of ova are arrested at the pre-vitellogenic stage. Reproductive stage examples shown in this atlas use S. elongates for spermatic development, S. proriger for oocyte development, and S. alutus for embryological development, because opportunistic sampling only permitted complete analysis of each respective developmental phase for those species. The results of this study and the proposed reproductive phases complement the recommended scheme submitted by Brown-Peterson et al. (2011), who call for a standardization of terminology for describing reproductive development of fishes.
Resumo:
The summer flounder, Paralichthys dentatus, is overexploited and is currently at very low levels of abundance. This is reflected in the compressed age structure of the population and the low catches in both commercial and recreational fisheries. Declining habitat quantity and quality may be contributing to these declines, however we lack a thorough understanding of the role of habitats in the population dynamics of this species. Stock structure is unresolved and current interpretations, depending on the technique and study area, suggest that there may be two or three spawning populations. If so, these stocks may have differing habitat requirements. In response to this lack of knowledge, this document summarizes and synthesizes the available information on summer flounder habitat in all life history stages (eggs, larvae, juveniles and adults) and identifies areas where further research is needed. Several levels of investigation were conducted in order to produce this document. First, an extensive search for summer flounder habitat information was made, which included both the primary and gray literature as well as unanalyzed data. Second, state and federal fisheries biologists and resource managers in all states within the primary range of summer flounder (Massachusetts to Florida) were interviewed along with a number of fish ecologists and summer flounder experts from the academic and private sectors. Finally, information from all sources was analyzed and synthesized to form a coherent overview. This document first presents an overview of the economic importance and current status of summer flounder (Chapter 1). It then summarizes our present state of knowledge of summer flounder distribution, life history patterns and stock identification (Chapter 2). This is followed by a synopsis of habitat requirements during each life history stage. For convenience, this is presented by general habitat as offshore eggs (Chapter 3), offshore larvae (Chapter 4), estuarine larvae (Chapter 5), estuarine juveniles (Chapter 6), offshore juveniles (Chapter 7) and estuarine and offshore adults (Chapter 8). In several instances, previously undigested data sets are analyzed to provide more detailed information, especially for estuarine juveniles. The information is then discussed in terms of its relevance to resource managers (Chapter 9).
Resumo:
Age, growth and mortality of the toadfish, Halobatrachus didactylus, were determined by examination of the whole sagittal otoliths of fish sampled in the Bay of Cádiz (southwestern Spain) from March 1999 to March 2000. A total of 844 specimens (425 males, 416 females, and 3 of indeterminate sex), ranging from 95 to 470 mm in total length were examined. Eighty-nine percent of the otoliths could be read allowing an age estimation. The opaque zone was formed between April and May coincident with the maximum reproductive peak, while the translucent zone formed mainly in summer-fall (June to December). Maximum ages for males and females were 12 and 10 years, respectively. The samples were dominated by 2- to 6-year-old specimens. Males matured at an age of approximately 2 years and females at 3 years. Fish total length and otolith radius were closely related. The von Bertalanffy growth curve was used to describe growth. The parameters were derived from back-calculated length-at-age. Significant differences in the growth parameters were found between sexes. Although the growth analysis revealed that this species is slow-growing, males reached larger sizes than females. Females appeared to experience higher natural mortality rates than males.
Resumo:
Lake sturgeon Acipenser fulvescens restoration is a priority throughout the Great Lakes basin, where sturgeon have been reduced to less than 1% of historic levels due to habitat degradation, overharvest, and fragmentation of spawning populations. The population parameters most important to long-term lake sturgeon persistence are unknown.
Resumo:
We describe reproductive dynamics of female spotted seatrout (Cynoscion nebulosus) in South Carolina (SC). Batch fecundity (BF), spawning frequency (SF), relative fecundity (RF), and annual fecundity (AF) for age classes 1−3 were estimated during the spawning seasons of 1998, 1999, and 2000. Based on histological evidence, spawning of spotted seatrout in SC was determined to take place from late April through early September. Size at first maturity was 248 mm total length (TL); 50% and 100% maturity occurred at 268 mm and 301 mm TL, respectively. Batch fecundity estimates from counts of oocytes in final maturation varied significantly among year classes. One-year-old spotted seatrout spawned an average of 145,452 oocytes per batch, whereas fish aged 2 and 3 had a mean BF of 291,123 and 529,976 oocytes, respectively. We determined monthly SF from the inverse of the proportion of ovaries with postovulatory follicles (POF) less than 24 hours old among mature and developing females. Overall, spotted seatrout spawned every 4.4 days, an average of 28 times during the season. A chronology of POF atresia for water temperature >25°C is presented. Length, weight (ovary-free), and age explained 67%, 65%, and 58% of the variability in BF, respectively. Neither RF (number of oocytes/g ovary-free weight) nor oocyte diameter varied significantly with age. However, RF was significantly greater and oocyte diameter was smaller at the end of the spawning season. Annual fecundity estimates were approximately 3.2, 9.5, and 17.6 million oocytes for each age class, respectively. Spotted seatrout ages 1−3 contributed an average of 29%, 39%, and 21% to the overall reproductive effort according to the relative abundance of each age class. Ages 4 and 5 contributed 7% and 4%, respectively, according to predicted AF values.
Resumo:
The reproductive biology of male franciscanas (Pontoporia blainvillei), based on 121 individuals collected in Rio Grande do Sul State, southern Brazil, was studied. Estimates on age, length, and weight at attainment of sexual maturity are presented. Data on the reproductive seasonality and on the relationship between some testicular characteristics and age, size, and maturity status are provided. Sexual maturity was assessed by histological examination of the testes. Seasonality was determined by changes in relative and total testis weight, and in seminiferous tubule diameters. Testis weight, testicular index of maturity, and seminiferous tubule diameters were reliable indicators of sexual maturity, whereas testis length, age, length, and weight of the dolphin were not. Sexual maturity was estimated to be attained at 3.6 years (CI 95% =2.7–4.5) with the DeMaster method and 3.0 years with the logistic equation. Length and weight at attainment of sexual maturity were 128.2 cm (CI 95%=125.3–131.1 cm) and 26.4 kg (CI 95% =24.7–28.1 kg), respectively. It could not be verified that there was any seasonal change in the testis weight and in the seminiferous tubule diameters in mature males. It is suggested that at least some mature males may remain reproductively active throughout the year. The extremely low relative testis weight indicates that sperm competition does not occur in the species. On the other hand, the absence of secondary sexual characteristics, the reversed sexual size dimorphism, and the small number of scars from intrassexual combats in males reinforce the hypothesis that male combats for female reproductive access may be rare for franciscana. It is hypothesized that P. blainvillei form temporary pairs (one male copulating with only one female) during the reproductive period.
Resumo:
Goldband snapper (Pristipomoides multidens) collected from commercial trap and line fishermen off the Kimberley coast of northwestern Australia were aged by examination of sectioned otoliths (sagittae).A total of 3833 P. multidens, 80–701 mm fork length (98–805 mm total length), were examined from commercial catches from 1995 to 1999. The oldest fish was estimated to be age 30+ years. Validation of age estimates was achieved with marginal increment analysis. The opaque and translucent zones were each formed once per year and are considered valid annual growth increments (the translucent zone was formed once per year between January and May). A strong link between water temperature and translucent zone formation was evident in P. multidens. The von Bertalanffy growth function was used to describe growth from length-at-age data derived from sectioned otoliths.
Resumo:
The tautog, Tautoga onitis (Linnaeus), ranges from Nova Scotia to South Carolina and has become a popular target for recreational and commercial fisheries. Although tautog are a multiple spawning species, reproductive potential, measured as annual fecundity, has not been estimated previously with methods (batch fecundity, spawning frequency) necessary for a species with indeterminate annual fecundity. A total of 960 tautog were collected from the mouth of the Rappahannock River in the lower Chesapeake Bay to 45 km offshore of Virginia’s coastline to investigate tautog reproductive biology in the southern portion of the species range. Tautog did not exhibit a 1:1 sex ratio; 56% were females. Male tautog reached 50% maturity at 218 mm TL, females at 224 mm TL. Tautog spawned from 7 April 1995 to 15 June 1995, at locations from the York River to 45 km offshore. Batch fecundity estimates ranged from 2800 to 181,200 eggs per spawning for female tautog age 3–9, total length 259– 516 mm. Mean batch fecundity ±SEM for female tautog ages 4–6 was 54,243 ±2472 eggs and 106,256 ±3837 eggs for females ages 7–9. Spawning frequency was estimated at 1.2 days, resulting in 58 spawning days per female in 1995. Estimates of potential annual fecundity for tautog ages 3–9 ranged from 160,000 to 10,510,000 eggs.
Resumo:
Portunus pelagicus was collected at regular intervals from two marine embayments and two estuaries on the lower west coast of Australia and from a large embayment located approximately 800 km farther north. The samples were used to obtain data on the reproductive biology of this species in three very different environments. Unlike females, the males show a loosening of the attachment of the abdominal flap to the cephalothorax at a prepubertal rather than a pubertal molt. Males become gonadally mature (spermatophores and seminal fluid present in the medial region of the vas deferentia) at a very similar carapace width (CW) to that at which they achieve morphometric maturity, as reflected by a change in the relative size of the largest cheliped. Logistic curves, derived from the prevalence of mature male P. pelagicus, generally had wider confidence limits with morphometric than with gonadal data. This presumably reflects the fact that the morphometric (allometric) method of classifying a male P. pelagicus as mature employs probabilities and is thus indirect, whereas gonadal structure allows a mature male to be readily identified. However, the very close correspondence between the CW50’s derived for P. pelagicus by the two methods implies that either method can be used for management purposes. Portunus pelagicus attained maturity at a significantly greater size in the large embayment than in the four more southern bodies of water, where water temperatures were lower and the densities of crabs and fishing pressure were greater. As a result of the emigration of mature female P. pelagicus from estuaries, the CW50’s derived by using the prevalence of mature females in estuaries represent overestimates for those populations as a whole. Estimates of the number of egg batches produced in a spawning season ranged from one in small crabs to three in large crabs. These data, together with the batch fecundities of different size crabs, indicate that the estimated number of eggs produced by P. pelagicus during the spawning season ranges from about 78,000 in small crabs (CW=80 mm) to about 1,000,000 in large crabs (CW=180 mm).