227 resultados para offshore sozietateak
Resumo:
The nearshore waters along the Myrtle Beach area are oceanographically referred to as Long Bay. Long Bay is the last in a series of semi-circular indentations located along the South Atlantic seaboard. The Bay extends for approximately 150 km from the Cape Fear River in North Carolina to Winyah Bay in South Carolina and has a number of small inlets (Figure 1). This region of the S.C. coast, commonly referred to as the “Grand Strand,” has a significant tourism base that accounts for a substantial portion of the South Carolina economy (i.e., 40% of the state’s total in 2002) (TIAA 2003). In 2004, the Grand Strand had an estimated 13.2 million visitors of which 90% went to the beach (MBCC 2006). In addition, Long Bay supports a shore-based hook and line fishery comprised of anglers fishing from recreational fishing piers, the beach, and small recreational boats just offshore. (PDF contains 4 pages)
Resumo:
Soft engineering solutions are the current standard for addressing coastal erosion in the US. In South Carolina, beach nourishment from offshore sand deposits and navigation channels has mostly replaced construction of seawalls and groins, which were common occurrences in earlier decades. Soft engineering solutions typically provide a more natural product than hard solutions, and also eliminate negative impacts to adjacent areas which are often associated with hard solutions. A soft engineering solution which may be underutilized in certain areas is shoal manipulation. (PDF contains 4 pages)
Resumo:
Die Konzepte für das Fischereimanagement haben in den vergangenen hundert Jahren eine tiefgreifende Wandlung durchgemacht. Sie entwickelten sich in der zweiten Hälfte des vergangenen Jahrhunderts von monospezifischen Ansätzen, in denen einzelne Populationen oder Bestände weitgehend isoliert betrachtet wurden, zum Multispecies-Management, das auch Wechselbeziehungen zwischen genutzten Arten berücksichtigte. Die stark verbesserten Ortungs- und Fangtechniken und die Nutzung noch unterfischter Fanggründe und Bestände hielten die Anlandungen eine Zeitlang auf hohem Niveau. Die rückläufigen Weltfischereierträge in den letzten Dekaden des vergangenen Jahrhunderts, der Kollaps wichtiger Fischereien und die auch von der Fischerei zu verantwortende fortschreitende Degradierung mariner Ökosysteme zeigten jedoch, dass eine nachhaltige Nutzung der fischereilichen Ressourcen bei gleichzeitiger Erhaltung der Ökosysteme mit diesen Konzepten nicht möglich ist. Angesichts dieses Offenbarungseids und unter dem zunehmenden Druck der Naturschützer wurden daher die Konzepte des ökosystemverträglichen Fischereimanagements (EBFM, ecosystem-based fisheries management) und des räumlichen Fischereimanagements (SM, spatial management) entwickelt, bei denen die Prioritäten umgedreht sind: Das Management geht nicht mehr vom Fischereiobjekt, sondern vom Ökosystem aus, das horizontal und vertikal in Zonen unterteilt wird, die zu verschiedenen Zeiten befischt oder unter Schutz gestellt werden können. EBFM zielt darauf ab, gesunde Ökosysteme inklusive der Fischereien zu erhalten, die von diesen Ökosystemen ohne Schädigung getragen werden. Möglicherweise sind diese neuen Konzepte nur wenig realistischer als die Ideen vom langfristigen Dauerertrag oder dem der nachhaltigen Fischerei, die der realen Welt überdimensionierter Fangflotten, unersättlicher Märkte und zahlreicher politischer Fehlentscheidungen nicht standhielten. Die traurige Tatsache ist, dass nicht nur die Fischerei, sondern auch die marinen Ökosysteme sich in einem sehr schlechten Zustand befinden. Um dem abzuhelfen, sind u.a. Schutzgebiete vorgesehen, in denen die Fischerei eingeschränkt oder verboten ist. Zusammen mit anderen Nutzungen wie Offshore-Windparks bedeutet diese neue Raumordnung einen massiven Eingriff in die bisherigen Rechte und Gewohnheiten der Fischer. In dieser Arbeit werden vor dem Hintergrund der Ökosystem-Degradierung einige grundlegende ökologische Zusammenhänge in natürlichen, befischten und geschützten marinen Systemen diskutiert. Dabei stützen wir uns auf empirische und experimentelle Befunde aus Nord- und Ostsee sowie anderen marinen Ökosystemen. Unter dem Strich sollten Schutzgebiete im Rahmen der neuen Managementkonzepte langfristig auch der Fischerei dienen; inwieweit allerdings eine Fischerei unter der künftigen Raumordnung noch sinnvoll ist, steht dahin.
Resumo:
Although there have been a number of studies on aquatic conditions and the flora and fauna of Lake Titicaca over many decades, most of this work has been centred on the offshore regions of the main lake. Water quality there has been degrading and abundant growth of Lemna spp. has been developing. Lemna spp., commonly called floating duck-weed or ‘lenteja de agua’ in Puno, occurs perennially in most parts of the inner Puno Bay shore-line. In this article, the authors compare water quality changes over recent decades in shore-line regions of Inner Puno Bay and their possible effects on the distribution, abundance and biomass of Lemna spp..
Resumo:
Egeria densa (PLANCH.) ST. JOHN, a submerged plant invader, forms a wide submerged plant zone, particularly along the west coast of the south basin, Lake Biwa. The macrophyte occupies over 82% of the plant zone in the basin and its biomass reaches 93% of the total. The estimated annual net production was approximately 1 kg dry wt./m2 in a dense area, which is about 4.5 times as much as the net production by phytoplankton in an offshore area of the basin. Although the area covered by the macrophyte is only 5.8% of the total of the basin, it produced about one-tenth of the total annual primary production. In the most productive season Egeria produced 46% of the total primary productivity. Thus, the macrophyte never be neglected when one considers the energy flow or material circulation in the basin. This study was initiated in order to clarify the role of submerged macrophytes, particularly E. densa, in Lake Biwa. The following points are reported in this paper: the distribution of macrophytes in the south basin; seasonal change in standing crop of E. densa; seasonal change in values related to production, utilizing a model proposed by Ikushima with its parameters experimentally determined.
Resumo:
The zooplankton and macrobenthic communities of Lake Victoria were sampled by lift net and Ponar grab, respectively. The zooplankton comprised copepods and cladocerans, rotifers and aquatic insect larvae. Most taxa exhibited wide distribution in the lake, with the exception of rotifers which were rare in deep offshore waters. The main components in the macro-benthos were chaoborid and chironomid larvae and molluscs. Caridina nilotica (Roux) and other groups were rare in the samples. Zooplankton density ranged from 100000 or more to 4 million ind. m2 and increased from the shallow inshore to deep offshore waters. Numerical dominance of cyclopoids and nauplius larvae was a common feature at all stations sampled. Most macrobenthic taxa were also widely distributed, although chaoborid and chironomid larvae were rare in the samples. Rastrineobola argentea (Pellegrin) and larval Lates niloticus (L.) ate mainly cyclopoid copepods, while cichlids showed a strong preference for adult insects. High ecological stability of the cyclopoids, and the zooplankton community in general, despite radical ecosystem changes in recent years, coupled with what appears to be high predation pressure, offers good prospects for the pelagic fishery in the lake.
Resumo:
Recent surveys have indicated an increase in haplochromine biomass recorded from the bottom trawl and in the beam trawl. The haplochromines recovering in the offshore waters belong to three species in the zooplanktivorous trophic group: Yssichromis laparogramma (Greenwood and Gee), Yssichromis fusiformis (Greenwood and Gee) and Astatotilapia lacrimosa (Boulenger). In this paper, the species composition and relative abundance of the zooplanktivorous haplochromines recorded from the bottom and frame trawl surveys in the various parts of the Ugandan waters of Lake Victoria are discussed.
Resumo:
This review examines water quality and stress indicators at levels of organisation from the individual to the community and beyond by means of three case studies concentrating on rocky shores within the north-east Atlantic. Responses of dogwhelks (Nucella) to tributyltin pollution from antifouling paints is examined as the main case study. There are effects at the individual level (development of male sexual characteristics in the female leading to effective sterility) and population level (reduction in juveniles, few females and eventual population disappearance of dogwhelks in badly contaminated areas) but information on community level effects of dogwhelk demise is sparse. Such effects were simulated by dogwhelk removal experiments on well studied, moderately exposed ledges on shores on the Isle of Man. The removal of dogwhelks reduced the size and longevity of newly established Fucus clumps that had escaped grazing. Removal of dogwhelks also increased the likelihood of algal escapes. In a factorial experiment dogwhelks were shown to be less important than limpets \{Patella) in structuring communities but still had a significant modifying effect by increasing the probability of algal escapes. Community level responses to stress on rocky shores are then explored by reference to catastrophic impacts such as oil spills, using the Torrey Canyon as a case study. Recovery of the system in response to this major perturbation took between 10-15 years through a series of damped oscillations. The final case study is that of indicators of ecosystem level change in response to climate fluctuations, using ratios of northern \{Semibalanus balanoides) and southern (Chthamalus spp.) barnacles. Indices derived from counts on the shore show good correlations with inshore sea-water temperatures after a 2-year lag phase. The use of barnacles to measure offshore changes is reviewed. The discussion considers the use of bioindicators at various levels of organisation.
Resumo:
A decade-long time series recorded in southern Monterey Bay, California demonstrates that the shallow, near-shore environment (17 m depth) is regularly inundated with pulses of cold, hypoxic and low pH water. During these episodes, oxygen can drop to biologically threatening levels, and pH levels were lower than expected. Weekly water chemistry monitoring revealed that the saturation state of aragonite (the more soluble form of calcium carbonate) was often below saturation and had a moderate positive relationship with pH, however, analytical and human error could be high. Pulses of hypoxia and low pH water with the greatest intensity arise at the onset of the spring upwelling season, and fluctuations are strongly semidurnal (tidal) and diurnal. Arrival of cold, hypoxic water on the inner shelf typically occurs 3 days after the arrival of a strong upwelling event and appears to be driven by upwelling modulated by internal tidal fluctuations. I found no relationship between the timing of low-oxygen events and the diel solar cycle nor with terrestrial nutrient input. These observations are consistent with advection of hypoxic water from the deep, offshore environment where water masses experience a general decline of temperature, oxygen and pH with depth, and inconsistent with biochemical forcing. Comparisons with concurrent temperature and oxygen time series taken ~20 km away at the head of the Monterey Canyon show similar patterns but even more intense hypoxic events due to stronger semidiurnal forcing there. Analysis of the durations of exposure to low oxygen levels establishes a framework for assessing the ecological relevance of these events. Increasing oceanic hypoxia and acidification of both surface and deep waters may increase the number, intensity, duration and spatial extent of future intrusions along the Pacific coast. Evaluation of the resiliency of nearshore ecosystems such as kelp forests, rocky reefs and sandy habitats, will require consideration of these events.
Resumo:
The Bassam artificial inlet was opened (in September 22, 1987) in order to revacuate offshore invasive aquatic plants. This has considerably modified the hydro-sedimentary environment of the lagoonal domain at Grand-Bassam. Tidal currents effect has confered the lagoonal waters an estuarine feature, the saline intrusion (25-35%o) increased beyond the Moossou bridges up to the confluence of the Comoe river. This has led to a cleaning of the river lower course and above all to the bottoms of the lagoon, which were previously confined. The remobilization of mud (from lagoonal bottoms around Bouet Island) evacuated offshore, has exposed lagoonal and oceanic sandy features. This new system remains fragile, with the seasonal (low river-flow) clogging.
Resumo:
Primary and secondary productions and nutrient regeneration in the Mauritanian upwelling area were studied by following a drogue for 9 days, from the point of upwelling till the water mass dives under offshore waters. The lag between phytoplanktonic bloom, zooplanktonic peak and bacterial activity is very short and may be explained by a well-settled biological cycle connected with an undercurrent. Organic production was estimated in two ways: (1) from chlorophyll 'a' values, considering a C/Chla ratio of 25 during the 5.5 day phytoplankton growth period, primary production computed by this method reaches 13.5 g C/m2; (2) from 14C values net primary production calculated for the same period reaches 10.5 g C/m2 and total organic production (net production + organic excretion) reaches 19.5 g C/m2. Organic production computed ratios, delta O/ delta C/ delta N/ delta Si/ delta P are equal to 130/43/11/7.4/1. Secondary production and 'grazing' are estimated from mesozooplankton respiration values and have a huge increase during the bloom. Net secondary production is assessed to be 1.0-4.2 g C/m2 for 6 days. Evidence of nutrient regeneration as ammonia, phosphate and silicate is given and regeneration rates are calculated. Zooplankton excretion plays an important part in nitrogen and phosphorus regeneration. Bacterial activity is induced by zooplankton organic excretion, then increased by phytoplankton decomposition at the end of the bloom.
Resumo:
The evolution of a plankton copepod population in the Mauritania upwelling was studied by following a drogue for 9 days, from the point of upwelling till the water-mass dives under offshore waters. The Shannon index of specific diversity and the tropic structure allow separation into several stages in the studied succession. The upwelling brings near the shore a rather poor, highly diverse fauna, with a low filter-feeder rate. The phytoplanktonic development induces an increase in the copepod number. The filter-feeders become dominant and the diversity decreases. When the increase of copepod number stops, the diversity decreases and the omnivore and carnivore rate increases.
Resumo:
A cruise of the R. V. Capricorne in May 1973, in inner part of the gulf of Guinea, allowed the authors to identify the main part of the Atlantic circulation at the longitude of 5 degrees E, between 4 degrees N and 4 degrees S. It gave new data on the termination of the equatorial undercurrent. At the equator, under the westward south equatorial current flows the Atlantic equatorial undercurrent with a maximum eastward velocity of 90 cm/sec at 30 m depth linked to a salinity maximum higher than 36.20 ppt. Below the equatorial undercurrent, about 80-100 m depth, flows a westward current with a velocity as high as 30 cm/sec. At 4 degrees S, the south equatorial countercurrent is well delineated by a high salinity core (more than 36.10 ppt) at 30 m depth with an eastward velocity core of 40 cm/sec. On the contrary, near 3 degrees 30N, a high salinity core (36.10 ppt) flows westwards with a speed of 40 cm/sec at 40 m depth: it is the "return flow" of the undercurrent (Hisard and Moliere 1974). At 4 degrees N the Guinea current carries eastwards surface salinities of 34.50 ppt at 40 cm/sec. Off Cape Lopez (0 degrees 35'S-8 degrees 42'E) the high salinity core of the undercurrent becomes wider near the shore. It is 25m wide offshore, and 70 m wide near the cape. A part of undercurrent water extends northwards, then flows westwards with the subsurface westward circulation in the inner part of the Gulf of Guinea. Another part flows south-southwestwards in a high salinity tongue along the African coast to 4 degrees S. South-west of Cape Lopez, the trades divergence contributes to an upwelling of cold and high salinity water; this water increases at the Cape Lopez front.
Resumo:
The overall objective of the project is the reduction of poverty in rural areas of Solomon Islands through creation of livelihoods based on sustainable aquaculture. This fits within the over-arching goals of the WorldFish Center in the Pacific to reduce poverty and hunger in rural communities, and with the Ministry of Fisheries and Marine Resources (MFMR) to stimulate rural development and to develop aquaculture. It has been recognised that the nature of the pearl farming industry means that a high chance of success requires a long term investment from an established pearl farming organisation. This project has been specifically designed to compile the elements of a pre-feasibility study to provide offshore pearl companies with sufficient information to investigate the potential for long-term investment in pearl farming in Solomon Islands. This report also includes the following 6 appendices: Appendix I) Past research and development on black-lip pearl oysters in Solomon Islands; Appendix II) Suitability of habitats in the Solomon Islands and other regions of the Pacific for growth of black-lip and silver-lip pearl oysters; Appendix III) Water temperature and cyclone frequency in the Solomon Islands and other key regions of the Pacific: implications for pearl farming; Appendix IV) Abundance, size structure and quality of silver-lip pearl oysters in Solomon Islands; Appendix V) Solomon Islands: the investment climate for pearl farming; Appendix VI) Pearl farming policy and management guidelines.
Resumo:
During the last century, the population of Pacific sardine (Sardinops sagax) in the California Current Ecosystem has exhibited large fluctuations in abundance and migration behavior. From approximately 1900 to 1940, the abundance of sardine reached 3.6 million metric tons and the “northern stock” migrated from offshore of California in the spring to the coastal areas near Oregon, Washington, and Vancouver Island in the summer. In the 1940s, the sardine stock collapsed and the few remaining sardine schools concentrated in the coastal region off southern California, year-round, for the next 50 years. The stock gradually recovered in the late 1980s and resumed its seasonal migration between regions off southern California and Canada. Recently, a model was developed which predicts the potential habitat for the northern stock of Pacific sardine and its seasonal dynamics. The habitat predictions were successfully validated using data from sardine surveys using the daily egg production method; scientific trawl surveys off the Columbia River mouth; and commercial sardine landings off Oregon, Washington, and Vancouver Island. Here, the predictions of the potential habitat and seasonal migration of the northern stock of sardine are validated using data from “acoustic–trawl” surveys of the entire west coast of the United States during the spring and summer of 2008. The estimates of sardine biomass and lengths from the two surveys are not significantly different between spring and summer, indicating that they are representative of the entire stock. The results also confirm that the model of potential sardine habitat can be used to optimally apply survey effort and thus minimize random and systematic sampling error in the biomass estimates. Furthermore, the acoustic–trawl survey data are useful to estimate concurrently the distributions and abundances of other pelagic fishes.