134 resultados para cryptic species
Resumo:
Clarias species purchased from fish mongers from Ado – Ekiti, Ikun Ekiti, Itapaji – Ekiti Nigeria were examined for possible deformities in any part of their body. A total number of 360, 140, and 40 fish samples were from Ado – Ekiti, Ikun – Ekiti, and Itapaji – Ekiti respectively. Deformities of various types were observed only from Ado – Ekiti collection. The deformities observed are malformed mouth, big head, stumpy body, and multiple vertebral deformities. The possible cause (s) of the deformities may be as a result of stress, pollution from human activities or other factors such as poor nutrition, hereditary, diseases, etc. but these causes has not been properly determined
Resumo:
Random Amplified Polymorphic DNA (RAPD) markers and cytochrome b (Cyt-b) gene sequences were utilized to fingerprint and construct phylogenetic relationships among four species of mackerel commonly found in the Straits of Malacca namely Rastrelliger kanagurta, R. brachysoma, Decapterus maruadsi and D. russelli. The UPGMA dendogram and genetic distance clearly showed that the individuals clustered into their own genus and species except for the Decapterus. These results were also supported by partial mtDNA cytochrome b gene sequences (279 bp) which found monotypic sequence for all Decapterus studied. Cytochrome b sequence phylogeny generated through Neighbor Joining (NJ) method was congruent with RAPD data. Results showed clear discrimination between both genera with average nucleotide divergence about 25.43%. This marker also demonstrated R. brachysoma and R. kanagurta as distinct species separated with average nucleotide divergence about 2.76%. However, based on BLAST analysis, this study indicated that the fish initially identified as D. maruadsi was actually D. russelli. The results highlighted the importance of genetic analysis for taxonomic validation, in addition to morphological traits.
Resumo:
This work refers to the same biological aspects of Chrysoblephus puniceus (marreco), Polysteganus coeruleopunctatus (cachucho) and Cheimerus nufar (robalo). It shows the progress in the biological study of the three species, pointing out at the same time the few discrepancies, which still need to be resolved.
Resumo:
The daily consumption rates and preference of juvenile Tilapia rendalli for some macrophytes, Ceratophyllum demersum, Lagarosiphon major, Najas pectinatas and Valisneria aethiopica were determined. Fish were offered single macrophyte diets to determine daily consumption and a mixture of the 4 macrophytes in equal quantities to determine selection. Consumption rates were 821.50 mg, 829.05 mg, 940.00 mg and 2293.53 mg per fish per day, respectively. The differences in consumption rates were significant. Preference was shown for V.aethiopica, whilst C.demersum was least selected. Fish fed on single species lost weight whereas those fed on a variety of macrophytes gained in weight.
Resumo:
The small-spotted catshark (Scyliorhinus canicula) (Linnaeus, 1758) and the longnose spurdog (Squalus blainville) (Risso, 1826) are two species occurring in the European and western African continental shelves with a wide geographical distribution. In this study, the diet of S. blainville and S. canicula off the Portuguese western Atlantic coast was investigated in 2006 by collecting monthly samples of these two species from local fishing vessels. In the stomachs of both species, crustaceans and teleosts were the dominant prey items, and molluscs, polychaetes, echinoderms, and sipunculids were found in lower abundance. In S. canicula, urochordate and chondrichthyan species were also observed in stomachs and were classified as accidental prey items. Scyliorhinus canicula consumed a broader group of prey items than did S. blainville. A significant diet overlap was observed, despite both species occupying different depth ranges over the continental shelf. Scyliorhinus canicula exhibited a consistency in diet composition among seasons, sexes, and maturity stages. Nonetheless, for both adults and juveniles, an increase in relative abundance of teleosts in the diet was observed in the spring and summer. This study provides evidence of the importance of S. canicula and S. blainville as benthic and pelagic predators along the western Atlantic coast.
Resumo:
From 2001 to 2006, 71 pop-up satellite archival tags (PSATs) were deployed on five species of pelagic shark (blue shark [Prionace glauca]; shortfin mako [Isurus oxyrinchus]; silky shark [Carcharhinus falciformis]; oceanic whitetip shark [C. longimanus]; and bigeye thresher [Alopias superciliosus]) in the central Pacific Ocean to determine species-specific movement patterns and survival rates after release from longline fishing gear. Only a single postrelease mortality could be unequivocally documented: a male blue shark which succumbed seven days after release. Meta-analysis of published reports and the current study (n=78 reporting PSATs) indicated that the summary effect of postrelease mortality for blue sharks was 15% (95% CI, 8.5–25.1%) and suggested that catch-and-release in longline fisheries can be a viable management tool to protect parental biomass in shark populations. Pelagic sharks displayed species-specific depth and temperature ranges, although with significant individual temporal and spatial variability in vertical movement patterns, which were also punctuated by stochastic events (e.g., El Niño-Southern Oscillation). Pelagic species can be separated into three broad groups based on daytime temperature preferences by using the unweighted pair-group method with arithmetic averaging clustering on a Kolmogorov-Smirnov Dmax distance matrix: 1) epipelagic species (silky and oceanic whitetip sharks), which spent >95% of their time at temperatures within 2°C of sea surface temperature; 2) mesopelagic-I species (blue sharks and shortfin makos, which spent 95% of their time at temperatures from 9.7° to 26.9°C and from 9.4° to 25.0°C, respectively; and 3) mesopelagic-II species (bigeye threshers), which spent 95% of their time at temperatures from 6.7° to 21.2°C. Distinct thermal niche partitioning based on body size and latitude was also evident within epipelagic species.
Resumo:
A stereo-video baited camera system (BotCam) has been developed as a fishery-independent tool to monitor and study deepwater fish species and their habitat. During testing, BotCam was deployed primarily in water depths between 100 and 300 m for an assessment of its use in monitoring and studying Hawaiian bottomfish species. Details of the video analyses and data from the pilot study with BotCam in Hawai`i are presented. Multibeam bathymetry and backscatter data were used to delineate bottomfish habitat strata, and a stratified random sampling design was used for BotCam deployment locations. Video data were analyzed to assess relative fish abundance and to measure f ish size composition. Results corroborate published depth ranges and zones of the target species, as well as their habitat preferences. The results indicate that BotCam is a promising tool for monitoring and studying demersal fish populations associated with deepwater habitats to a depth of 300 m, at mesohabitat scales. BotCam is a flexible, nonextractive, and economical means to better understand deepwater ecosystems and improve science-based ecosystem approaches to management.
Resumo:
Commercial catches taken in southwestern Australian waters by trawl fisheries targeting prawns and scallops and from gillnet and longline fisheries targeting sharks were sampled at different times of the year between 2002 and 2008. This sampling yielded 33 elasmobranch species representing 17 families. Multivariate statistics elucidated the ways in which the species compositions of elasmobranchs differed among fishing methods and provided benchmark data for detecting changes in the elasmobranch fauna in the future. Virtually all elasmobranchs caught by trawling, which consisted predominantly of rays, were discarded as bycatch, as were approximately a quarter of the elasmobranchs caught by both gillnetting and longlining. The maximum lengths and the lengths at maturity of four abundant bycatch species, Heterodontus portusjacksoni, Aptychotrema vincentiana, Squatina australis, and Myliobatis australis, were greater for females than males. The L50 determined for the males of these species at maturity by using full clasper calcification as the criterion of maturity did not differ significantly from the corresponding L50 derived by using gonadal data as the criterion for maturity. The proportions of the individuals of these species with lengths less than those at which 50% reach maturity were far greater in trawl samples than in gillnet and longline samples. This result was due to differences in gear selectivity and to trawling being undertaken in shallow inshore waters that act as nursery areas for these species. Sound quantitative data on the species compositions of elasmobranchs caught by commercial fisheries and the biological characteristics of the main elasmobranch bycatch species are crucial for developing strategies for conserving these important species and thus the marine ecosystems of which they are part.
Resumo:
Estimating the abundance of cetaceans from aerial survey data requires careful attention to survey design and analysis. Once an aerial observer perceives a marine mammal or group of marine mammals, he or she has only a few seconds to identify and enumerate the individuals sighted, as well as to determine the distance to the sighting and record this information. In line-transect survey analyses, it is assumed that the observer has correctly identified and enumerated the group or individual. We describe methods used to test this assumption and how survey data should be adjusted to account for observer errors. Harbor porpoises (Phocoena phocoena) were censused during aerial surveys in the summer of 1997 in Southeast Alaska (9844 km survey effort), in the summer of 1998 in the Gulf of Alaska (10,127 km), and in the summer of 1999 in the Bering Sea (7849 km). Sightings of harbor porpoise during a beluga whale (Phocoena phocoena) survey in 1998 (1355 km) provided data on harbor porpoise abundance in Cook Inlet for the Gulf of Alaska stock. Sightings by primary observers at side windows were compared to an independent observer at a belly window to estimate the probability of misidentification, underestimation of group size, and the probability that porpoise on the surface at the trackline were missed (perception bias, g(0)). There were 129, 96, and 201 sightings of harbor porpoises in the three stock areas, respectively. Both g(0) and effective strip width (the realized width of the survey track) depended on survey year, and g(0) also depended on the visibility reported by observers. Harbor porpoise abundance in 1997–99 was estimated at 11,146 animals for the Southeast Alaska stock, 31,046 animals for the Gulf of Alaska stock, and 48,515 animals for the Bering Sea stock.
Resumo:
The introduced grouper species peacock hind (Cephalopholis argus), was the dominant large-body piscivore on the Main Hawaiian Island (MHI) reefs assessed by underwater visual surveys in this study. However, published data on C. argus feeding ecology are scarce, and the role of this species in Hawaiian reef ecosystems is presently not well understood. Here we provide the first comprehensive assessment of the diet composition, prey electivity (dietary importance of prey taxa compared to their availability on reefs), and size selectivity (prey sizes in the diet compared to sizes on reefs) of this important predator in the MHI. Diet consisted 97.7% of fishes and was characterized by a wide taxonomic breadth. Surprisingly, feeding was not opportunistic, as indicated by a strongly divergent electivity for different prey fishes. In addition, whereas some families of large-body species were represented in the diet exclusively by recruit-size individuals (e.g., Aulostomidae), several families of smaller-body species were also represented by juveniles or adults (e.g., Chaetodontidae). Both the strength and mechanisms of the effects of C. argus predation are therefore likely to differ among prey families. This study provides the basis for a quantitative estimate of prey consumption by C. argus, which would further increase understanding of impacts of this species on native fishes in Hawaii.