305 resultados para benthic ecology
Resumo:
Without knowledge of basic seafloor characteristics, the ability to address any number of critical marine and/or coastal management issues is diminished. For example, management and conservation of essential fish habitat (EFH), a requirement mandated by federally guided fishery management plans (FMPs), requires among other things a description of habitats for federally managed species. Although the list of attributes important to habitat are numerous, the ability to efficiently and effectively describe many, and especially at the scales required, does not exist with the tools currently available. However, several characteristics of seafloor morphology are readily obtainable at multiple scales and can serve as useful descriptors of habitat. Recent advancements in acoustic technology, such as multibeam echosounding (MBES), can provide remote indication of surficial sediment properties such as texture, hardness, or roughness, and further permit highly detailed renderings of seafloor morphology. With acoustic-based surveys providing a relatively efficient method for data acquisition, there exists a need for efficient and reproducible automated segmentation routines to process the data. Using MBES data collected by the Olympic Coast National Marine Sanctuary (OCNMS), and through a contracted seafloor survey, we expanded on the techniques of Cutter et al. (2003) to describe an objective repeatable process that uses parameterized local Fourier histogram (LFH) texture features to automate segmentation of surficial sediments from acoustic imagery using a maximum likelihood decision rule. Sonar signatures and classification performance were evaluated using video imagery obtained from a towed camera sled. Segmented raster images were converted to polygon features and attributed using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999) for use in a geographical information system (GIS). (PDF contains 41 pages.)
Resumo:
Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)
Resumo:
The Olympic Coast National Marine Sanctuary (OCNMS) continues to invest significant resources into seafloor mapping activities along Washington’s outer coast (Intelmann and Cochrane 2006; Intelmann et al. 2006; Intelmann 2006). Results from these annual mapping efforts offer a snapshot of current ground conditions, help to guide research and management activities, and provide a baseline for assessing the impacts of various threats to important habitat. During the months of August 2004 and May and July 2005, we used side scan sonar to image several regions of the sea floor in the northern OCNMS, and the data were mosaicked at 1-meter pixel resolution. Video from a towed camera sled, bathymetry data, sedimentary samples and side scan sonar mapping were integrated to describe geological and biological aspects of habitat. Polygon features were created and attributed with a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999). For three small areas that were mapped with both side scan sonar and multibeam echosounder, we made a comparison of output from the classified images indicating little difference in results between the two methods. With these considerations, backscatter derived from multibeam bathymetry is currently a costefficient and safe method for seabed imaging in the shallow (<30 meters) rocky waters of OCNMS. The image quality is sufficient for classification purposes, the associated depths provide further descriptive value and risks to gear are minimized. In shallow waters (<30 meters) which do not have a high incidence of dangerous rock pinnacles, a towed multi-beam side scan sonar could provide a better option for obtaining seafloor imagery due to the high rate of acquisition speed and high image quality, however the high probability of losing or damaging such a costly system when deployed as a towed configuration in the extremely rugose nearshore zones within OCNMS is a financially risky proposition. The development of newer technologies such as intereferometric multibeam systems and bathymetric side scan systems could also provide great potential for mapping these nearshore rocky areas as they allow for high speed data acquisition, produce precisely geo-referenced side scan imagery to bathymetry, and do not experience the angular depth dependency associated with multibeam echosounders allowing larger range scales to be used in shallower water. As such, further investigation of these systems is needed to assess their efficiency and utility in these environments compared to traditional side scan sonar and multibeam bathymetry. (PDF contains 43 pages.)
Resumo:
The implementation of various types of marine protected areas is one of several management tools available for conserving representative examples of the biological diversity within marine ecosystems in general and National Marine Sanctuaries in particular. However, deciding where and how many sites to establish within a given area is frequently hampered by incomplete knowledge of the distribution of organisms and an understanding of the potential tradeoffs that would allow planners to address frequently competing interests in an objective manner. Fortunately, this is beginning to change. Recent studies on the continental shelf of the northeastern United States suggest that substrate and water mass characteristics are highly correlated with the composition of benthic communities and may therefore, serve as proxies for the distribution of biological biodiversity. A detailed geo-referenced interpretative map of major sediment types within Stellwagen Bank National Marine Sanctuary (SBNMS) has recently been developed, and computer-aided decision support tools have reached new levels of sophistication. We demonstrate the use of simulated annealing, a type of mathematical optimization, to identify suites of potential conservation sites within SBNMS that equally represent 1) all major sediment types and 2) derived habitat types based on both sediment and depth in the smallest amount of space. The Sanctuary was divided into 3610 0.5 min2 sampling units. Simulations incorporated constraints on the physical dispersion of sampling units to varying degrees such that solutions included between one and four site clusters. Target representation goals were set at 5, 10, 15, 20, and 25 percent of each sediment type, and 10 and 20 percent of each habitat type. Simulations consisted of 100 runs, from which we identified the best solution (i.e., smallest total area) and four nearoptimal alternates. We also plotted total instances in which each sampling unit occurred in solution sets of the 100 runs as a means of gauging the variety of spatial configurations available under each scenario. Results suggested that the total combined area needed to represent each of the sediment types in equal proportions was equal to the percent representation level sought. Slightly larger areas were required to represent all habitat types at the same representation levels. Total boundary length increased in direct proportion to the number of sites at all levels of representation for simulations involving sediment and habitat classes, but increased more rapidly with number of sites at higher representation levels. There were a large number of alternate spatial configurations at all representation levels, although generally fewer among one and two versus three- and four-site solutions. These differences were less pronounced among simulations targeting habitat representation, suggesting that a similar degree of flexibility is inherent in the spatial arrangement of potential protected area systems containing one versus several sites for similar levels of habitat representation. We attribute these results to the distribution of sediment and depth zones within the Sanctuary, and to the fact that even levels of representation were sought in each scenario. (PDF contains 33 pages.)
Resumo:
This study analyzed species richness, distribution, and sighting frequency of selected reef fishes to describe species assemblage composition, abundance, and spatial distribution patterns among sites and regions (Upper Keys, Middle Keys, Lower Keys, and Dry Tortugas) within the Florida Keys National Marine Sanctuary (FKNMS) barrier reef ecosystem. Data were obtained from the Reef Environmental Education Foundation (REEF) Fish Survey Project, a volunteer fish-monitoring program. A total of 4,324 visual fish surveys conducted at 112 sites throughout the FKNMS were used in these analyses. The data set contained sighting information on 341 fish species comprising 68 families. Species richness was generally highest in the Upper Keys sites (maximum was 220 species at Molasses Reef) and lowest in the Dry Tortugas sites. Encounter rates differed among regions, with the Dry Tortugas having the highest rate, potentially a result of differences in the evenness in fishes and the lower diversity of habitat types in the Dry Tortugas region. Geographic coverage maps were developed for 29 frequently observed species. Fourteen of these species showed significant regional variation in mean sighting frequency (%SF). Six species had significantly lower mean %SF and eight species had significantly higher mean %SF in the Dry Tortugas compared with other regions. Hierarchical clustering based on species composition (presence-absence) and species % SF revealed interesting patterns of similarities among sites that varied across spatial scales. Results presented here indicate that phenomena affecting reef fish composition in the FKNMS operate at multiple spatial scales, including a biogeographic scale that defines the character of the region as a whole, a reef scale (~50-100 km) that include meso-scale physical oceanographic processes and regional variation in reef structure and associated reef habitats, and a local scale that includes level of protection, cross-shelf location and a suite of physical characteristics of a given reef. It is likely that at both regional and local scales, species habitat requirements strongly influence the patterns revealed in this study, and are particularly limiting for species that are less frequently observed in the Dry Tortugas. The results of this report serve as a benchmark for the current status of the reef fishes in the FKNMS. In addition, these data provide the basis for analyses on reserve effects and the biogeographic coupling of benthic habitats and fish assemblages that are currently underway. (PDF contains 61 pages.)
Resumo:
The Flower Garden Banks are topographic features on the edge of the continental shelf in the northwest Gulf of Mexico. These banks are approximately 175 km southeast of Galveston, Texas at 28° north latitude and support the northernmost coral reefs on the North American continental shelf. The East and West Flower Garden Banks (EFG and WFG) and Stetson Bank, a smaller sandstone bank approximately 110 km offshore, are managed and protected as the Flower Garden Banks National Marine Sanctuary (FGBNMS). As part of a region-wide initiative to assess coral reef condition, the benthic and fish communities of the EFG and WFG were assessed using the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol. The AGRRA survey was conducted during a week-long cruise in August 1999 that was jointly sponsored by the FGBNMS and the Reef Environmental Education Foundation (REEF). A total of 25 coral transects, 132 algal quadrats, 24 fish transects, and 26 Roving Diver (REEF) surveys were conducted. These surveys revealed reefs with high coral cover, dominated by large, healthy corals, little macroalgae, and healthy fish populations. The percent live coral cover was 53.9 and 48.8 at the WFG and EFG, respectively, and the average colony diameter was 93 and 81 cm. Fish diversity was lower than most Caribbean reefs, but large abundances and size of many species reflected the low fishing pressure on the banks. The benthic and fish assemblages at the EFG and WFG were similar. Due to its near pristine conditions, the FGB data will prove to be a valuable component in the AGRRA database and its resulting scale of reef condition for the region. (PDF contains 22 pages.)
Resumo:
Ghost shrimp and mud shrimp in the decapod infraorder Thalassinidea are ecologically important members of many benthic intertidal and shallow subtidal infaunal communities, largely due to the sediment filtration and mixing that result from their burrowing and feeding behavior. These activities considerably modify their immediate environment and have made these cryptic animals extremely interesting to scientists in terms of their behavior, ecology, and classification. Over 20 years ago, seven species of thalassinideans were known from the South Atlantic Bight (Cape Hatteras, NC to Cape Canaveral, FL). During this study, the examination of extensive collections from the National Museum of Natural History (NMNH), the Southeastern Regional Taxonomic Center (SERTC), and regional institutions, resulted in the identification of 14 species of thalassinideans currently known to occur within this region. The family Axiidae is represented by three species: Axius armatus, Calaxius jenneri, and Paraxiopsis gracilimana; the Callianassidae by six: Biffarius biformis, B. cf. fragilis, Callichirus major, Cheramus marginatus, Gilvossius setimanus, and Necallianassa berylae; the Calocarididae by two: Calocaris templemani and Acanthaxius hirsutimanus; and the families Laomediidae, Thomassiniidae, and Upogebiidae are each represented by one: Naushonia crangonoides, Crosniera wennerae, and Upogebia affinis, respectively. An illustrated key is presented for species level identification and supplemental notes on the ecology, distribution, and taxonomy of the species are provided.(PDF file contains 38 pages.)
Resumo:
Submersible surveys at numerous reefs and banks in the northwestern Gulf of Mexico (NWGOM) were conducted as part of the Sustainable Seas Expedition (SSE) during July/August 2002 to identify reef fish communities, characterize benthic habitats, and identify deep coral reef ecosystems. To identify the spatial extent of hard bottom reef communities, the Flower Garden Banks National Marine Sanctuary (FGBNMS) and the U.S. Geological Survey (USGS) mapped approximately 2000 km2 of the Northwestern Gulf of Mexico (NWGOM) continental shelf during June 2002 with high-resolution multibeam bathymetry. Previous investigations conducted on the features of interest (with the exceptions of East and West Flower Garden and Sonnier Banks, accessible by SCUBA) had not been conducted since the 1970s and 1980s, and did not have the use of high-resolution maps to target survey sites. The base maps were instrumental in navigating submersibles to specific features at each study site during the Sustainable Seas Expedition (SSE)—a submersible effort culminating from a partnership between the National Atmospheric and Oceanic Administration (NOAA) and the National Geographic Society (NGS). We report the initial findings of our submersible surveys, including habitat and reef fish diversity at McGrail, Alderdice, and Sonnier Banks. A total of 120 species and 40,724 individuals were identified from video surveys at the three banks. Planktivorous fishes constituted over 87% by number for the three banks, ranging from 81.4% at Sonnier Banks to 94.3% at Alderdice Bank, indicating a direct link to pelagic prey communities, particularly in the deep reef zones. High numbers of groupers, snappers, jacks, and other fishery species were observed on all three features. These sites were nominated as Habitat Areas of Particular Concern (HAPC) by the Gulf of Mexico Fishery Council in March 2004. Data obtained during this project will contribute to benthic habitat characterization and assessment of the associated fish communities through future SCUBA, ROV, and submersible missions, and allow comparisons to other deep reef ecosystems found throughout the Gulf of Mexico and western Atlantic Ocean.
Resumo:
As part of a multibeam and side scan sonar (SSS) benthic survey of the Marine Conservation District (MCD) south of St. Thomas, USVI and the seasonal closed areas in St. Croix—Lang Bank (LB) for red hind (Epinephelus guttatus) and the Mutton Snapper (MS) (Lutjanus analis) area—we extracted signals from water column targets that represent individual and aggregated fish over various benthic habitats encountered in the SSS imagery. The survey covered a total of 18 km2 throughout the federal jurisdiction fishery management areas. The complementary set of 28 habitat classification digital maps covered a total of 5,462.3 ha; MCDW (West) accounted for 45% of that area, and MCDE (East) 26%, LB 17%, and MS the remaining 13%. With the exception of MS, corals and gorgonians on consolidated habitats were significantly more abundant than submerged aquatic vegetation (SAV) on unconsolidated sediments or unconsolidated sediments. Continuous coral habitat was the most abundant consolidated habitat for both MCDW and MCDE (41% and 43% respectively). Consolidated habitats in LB and MS predominantly consisted of gorgonian plain habitat with 95% and 83% respectively. Coral limestone habitat was more abundant than coral patch habitat; it was found near the shelf break in MS, MCDW, and MCDE. Coral limestone and coral patch habitats only covered LB minimally. The high spatial resolution (0.15 m) of the acquired imagery allowed the detection of differing fish aggregation (FA) types. The largest FA densities were located at MCDW and MCDE over coral communities that occupy up to 70% of the bottom cover. Counts of unidentified swimming objects (USOs), likely representing individual fish, were similar among locations and occurred primarily over sand and shelf edge areas. Fish aggregation school sizes were significantly smaller at MS than the other three locations (MCDW, MCDE, and LB). This study shows the advantages of utilizing SSS in determining fish distributions and density.
Resumo:
In July 1974, we began a two-year baseline study of the Moss Landing Elkhorn Slough marine environment for Pacific Gas and Electric Company as mandated by the Coastal Commission. The original proposal included strong recommendations for more complete oceanographic studies and a third year of data collection. These further studies were not funded. This report is divided into three sections: oceanography, benthic invertebrate ecology and fish and zooplankton ecology. (PDF contains 480 pages)
Resumo:
In July, 1974 we began a baseline study of the Moss Landing-Elkhorn Slough marine environment for PG&E as mandated by the Coastal Commission. This report constitutes results of the first year's program. It is divided into three sections, oceanography, benthic invertebrate ecology, and fish and zooplankton ecology. (PDF contains 226 pages)
Resumo:
Daytime feeding behavior of humpback whales (Megaptera novaeangliae) in Gulf of the Farallones, California, and adjacent waters was observed during autumn of 1988 to 1990. Bodega Canyon, Cordell Bank, and the Farallon Islands were the primary sites of feeding activity. Fecal samples of whales and zooplankton tows contained euphausiids exclusively, dominated by Thysanoessa spinifera (79%), with lesser amounts of Euphausia pacifica (14%), Nyctiphanes simplex (4%), and Nematoscelis difficilis (3%). In 1988 and 1990, whales also were infrequently observed feeding on small schooling fish, presumably Pacific herring (Clupea pallasii), northern anchovy (Engraulis mordax), and juvenile rockfish (Sebastes spp.). Feeding was the most common behavior observed (52%), and less frequently traveling (23%), milling (21 %), and resting (4%). Whales used different methods to consume euphausiid prey at the surface (0-10 m), in shallow water (11-60 m), and deep water (61-140 m). Humpback whales fed at the surface 56% of time in 1988 and 32% of time in 1990, using primarily lateral lunges to capture swarms of euphausiids. In 1989, no surface feeding was observed; however, deep, long-duration dives were followed by extended surface intervals with many respirations. These 1989 observations coincided with increased prey depth as indicated by depth sounder records of diving whales and prey scattering layers. In 1989, increased prey depth and associated feeding behaviors were strongly associated with unusually high surface temperatures, calm seas, and changes in water circulation. Environmental conditions in 1989 triggered the most intense and wide-spread occurrence of red tide in this region since 1980. Red tide samples collected throughout this period contained Alexandrium (=Gonyaulax) catenella and Noctiluca scintillans. Surface feeding was observed only in 1988 and 1990, when surface prey were available and red tides were very limited in extent, duration, and intensity. Annual variations in humpback whale feeding behavior were related to prey availability which is affected by corresponding environmental conditions. (PDF contains 94 pages)
Resumo:
Between 1990 and 1995, Pacific coastal bottlenose dolphins (Tursiops truncatus gillii) were studied using photo-identification during 228 boat-based surveys of the coastal strip (<1 km offshore) between Marina and New Brighton Beach in Monterey Bay (18 km of coastline). The study period encompassed 3 regular (1990, 1991 and 1995) and 3 El Niño years (1992, 1993, 1994). Based on dorsal fin markings, 97 unique individuals were identified. Eighteen animals (19%) showed a high level of site fidelity (defined as presence in at least 5 of the 6 years), although their overall range was larger than the study area. Thirty-eight animals (39%) were transient, leaving for periods of time, and 41 (42%) were occasional encounters. The rate of discovery indicated a pulsed recruitment of new individuals into the study area, with periods of stable school composition, especially during non-El Nino years, and periods of high school fluidity. Encounter rate was significantly higher in El Niño (81%) than non-El Niño years (61%). School size averaged 16 individuals (C.I.3, =0.05) and was significantly larger in El Niño years. Schools where calves were present were twice as large (mean=15; S.D.=8) than schools without calves (mean=8; S.D.=6). Newborns represented 12% of the sightings and were seen year round with a peak in summer and fall. Crude birth rate ranged between 0.09 and 0.17 (mean=0.13; S.D.=0.03). Five females calved in consecutive years and a resident female calved once a year for the duration of the study, possibly indicating a high rate of mortality for calves in this area. Individuals often traveled as subgroups of more consistent composition than the school itself, possibly indicating that a stronger social bond exists within these units which may function as “bands” (sensu Wells 1991) of same sex individuals traveling within a larger school of mixed composition. (ppt file of poster)
Resumo:
The Alaska Fisheries Science Center (AFSC), National Marine Fisheries Service (NMFS), hosted an international workshop, 'The Importance of Prerecruit Walleye Pollock to the Bering Sea and North Pacific Ecosystems," from 28 to 30 October 1993. This workshop was held in conjunction with the annual International North Pacific Marine Science Organization (PICES) meeting held in Seattle. Nearly 100 representatives from government agencies, universities, and the fishing industry in Canada, Japan, the People's Republic of China, Russia, and the United States took part in the workshop to review and discuss current knowledge on juvenile pollock from the postlarval period to the time they recruit to the fisheries. In addition to its importance to humans as a major commercial species, pollock also serves as a major forage species for many marine fishes, birds, and mammals in the North Pacific region. (PDF file contains 236 pages.)
Resumo:
This report owes its genesis to the foresight and enthusiam of Dr. Kazuhiro Mizue. By happy circumstance, Professor Mizue contacted me in 1983 with his visionary ideas on cooperative programs. He noted that the time was right because the Japan Society for the Promotion of Science and the National Science Foundation had mutually given priority to cooperative programs in marine biology. I therefore agreed to act as the U.S. coordinator and proposed to NSF, a short trip to Japan to negotiate site visits and timing with ten previously appointed Japanese scientists and, if that trip were successful, to negotiate a joint research project, possibly followed by a joint seminar. (PDF file contains 528 pages.)