126 resultados para Zone 30
Resumo:
The Monitor National Marine Sanctuary (MNMS) was the nation’s first sanctuary, originally established in 1975 to protect the famous civil war ironclad shipwreck, the USS Monitor. Since 2008, sanctuary sponsored archeological research has branched out to include historically significant U-boats and World War II shipwrecks within the larger Graveyard of the Atlantic off the coast of North Carolina. These shipwrecks are not only important for their cultural value, but also as habitat for a wide diversity of fishes, invertebrates and algal species. Additionally, due to their unique location within an important area for biological productivity, the sanctuary and other culturally valuable shipwrecks within the Graveyard of the Atlantic are potential sites for examining community change. For this reason, from June 8-30, 2010, biological and ecological investigations were conducted at four World War II shipwrecks (Keshena, City of Atlanta, Dixie Arrow, EM Clark), as part of the MNMS 2010 Battle of the Atlantic (BOTA) research project. At each shipwreck site, fish community surveys were conducted and benthic photo-quadrats were collected to characterize the mobile conspicuous fish, smaller prey fish, and sessile invertebrate and algal communities. In addition, temperature sensors were placed at all four shipwrecks previously mentioned, as well as an additional shipwreck, the Manuela. The data, which establishes a baseline condition to use in future assessments, suggest strong differences in both the fish and benthic communities among the surveyed shipwrecks based on the oceanographic zone (depth). In order to establish these shipwrecks as sites for detecting community change it is suggested that a subset of locations across the shelf be selected and repeatedly sampled over time. In order to reduce variability within sites for both the benthic and fish communities, a significant number of surveys should be conducted at each location. This sampling strategy will account for the natural differences in community structure that exist across the shelf due to the oceanographic regime, and allow robust statistical analyses of community differences over time.
Resumo:
The overall purpose of this project was to collect available information on the characteristics of essential fish habitats in protected and non-protected marine areas around the islands of Puerto Rico. Specifically, this project compiled historical information on benthic habitats and the status of marine resources into a Geographic Information System (GIS) by digitizing paper copies of existing marine geologic maps that were developed for the Caribbean Fishery Management Council (CFMC) for areas around the Commonwealth of Puerto Rico. In addition, information on benthic habitat types, Essential Fish Habitat (EFH) requirements, and fishing and non-fishing impacts to marine resources were compiled for two priority areas: La Parguera and Vieques. The information obtained will help to characterize and select habitats for future monitoring of impacts of fishing and non-fishing activities and to develop management recommendations for conservation of important marine habitats. The project focused specifically on areas identified as priorities for conservation by the Puerto Rico Department of Natural and Environmental Resources (DNER) and the Local Action Strategy Overfishing Group.
Resumo:
NOAA’s Mussel Watch Program was designed to monitor the status and trends of chemical contamination of U.S. coastal waters, including the Great Lakes. The Program began in 1986 and is one of the longest running, continuous coastal monitoring programs that is national in scope. NOAA established Mussel Watch in response to a legislative mandate under Section 202 of Title II of the Marine Protection, Research and Sanctuaries Act (MPRSA) (33 USC 1442). In addition to monitoring contaminants throughout the Nation’s coastal shores, Mussel Watch stores samples in a specimen bank so that trends can be determined retrospectively for new and emerging contaminants of concern. In recent years, flame retardant chemicals, known as polybrominated diphenyl ethers (PBDEs), have generated international concern over their widespread distribution in the environment, their potential to bioaccumulate in humans and wildlife, and concern for suspected adverse human health effects. The Mussel Watch Program, with additional funding provided by NOAA’s Oceans and Human Health Initiative, conducted a study of PBDEs in bivalve tissues and sediments. This report, which represents the first national assessment of PBDEs in the U.S. coastal zone, shows that they are widely distributed. PBDE concentrations in both sediment and bivalve tissue correlate with human population density along the U.S. coastline. The national and watershed perspectives given in this report are intended to support research, local monitoring, resource management, and policy decisions concerning these contaminants.
Resumo:
We examined movement patterns of sportfish that were tagged in the northern Indian River Lagoon, Florida, between 1990 and 1999 to assess the degree of fish exchange between an estuarine no-take zone (NTZ) and surrounding waters. The tagged f ish were from seven species: red drum (Sciaenops ocellatus); black drum (Pogonias cromis); sheepshead (Archosargus probatocephalus); common snook (Centropomus undecimalis); spotted seatrout (Cynoscion nebulosus); bull shark (Carcharhinus leucas); and crevalle jack (Caranx hippos). A total of 403 tagged fish were recaptured during the study period, including 65 individuals that emigrated from the NTZ and 16 individuals that immigrated into the NTZ from surrounding waters of the lagoon. Migration distances between the original tagging location and the sites where emigrating fish were recaptured were from 0 to 150 km, and these migration distances appeared to be influenced by the proximity of the NTZ to spawning areas or other habitats that are important to specific life-history stages of individual species. Fish that immigrated into the NTZ moved distances ranging from approximately 10 to 75 km. Recapture rates for sportfish species that migrated across the NTZ boundary suggested that more individuals may move into the protected habitats than move out. These data demonstrated that although this estuarine no-take reserve can protect species from fishing, it may also serve to extract exploitable individuals from surrounding fisheries; therefore, if the no-take reserve does function to replenish surrounding fisheries, then increased egg production and larval export may be more important mechanisms of replenishment than the spillover of excess adults from the reserve into fishable areas.
Resumo:
Understanding recolonization processes of intertidal fish assemblages is integral for predicting the consequences of significant natural or anthropogenic impacts on the intertidal zone. Recolonization of experimentally defaunated intertidal rockpools by fishes at Bass Point, New South Wales (NSW), Australia, was assessed quantitatively by using one long-term and two short-term studies. Rockpools of similar size and position at four sites within the intertidal zone were repeatedly defaunated of their fish fauna after one week, one month, and three months during two shortterm studies in spring and autumn (5 months each), and every six months for the long-term study (12 months). Fish assemblages were highly resilient to experimental perturbations—recolonizing to initial fish assemblage structure within 1−3 months. This recolonization was primarily due to subadults (30−40 mm TL) and adults (>40 mm TL) moving in from adjacent rockpools and presumably to abundant species competing for access to vacant habitat. The main recolonizers were those species found in highest numbers in initial samples, such as Bathygobius cocosensis, Enneapterygius rufopileus, and Girella elevata. Defaunation did not affect the size composition of fishes, except during autumn and winter when juveniles (<30 mm TL) recruited to rockpools. It appears that Bass Point rockpool fish assemblages are largely controlled by postrecruitment density-dependent mechanisms that indicate that recolonization may be driven by deterministic mechanisms.
Resumo:
Goldband snapper (Pristipomoides multidens) collected from commercial trap and line fishermen off the Kimberley coast of northwestern Australia were aged by examination of sectioned otoliths (sagittae).A total of 3833 P. multidens, 80–701 mm fork length (98–805 mm total length), were examined from commercial catches from 1995 to 1999. The oldest fish was estimated to be age 30+ years. Validation of age estimates was achieved with marginal increment analysis. The opaque and translucent zones were each formed once per year and are considered valid annual growth increments (the translucent zone was formed once per year between January and May). A strong link between water temperature and translucent zone formation was evident in P. multidens. The von Bertalanffy growth function was used to describe growth from length-at-age data derived from sectioned otoliths.
Resumo:
The role of several environmental factors on the breeding and hatching of fish has been studied by many earlier investigators. Perfection in the hypophysation technique has helped to some extent in by-passing the environmental variables such as temperature, light and rain. With the use of a modern fish hatchery, it is possible to attain maximum success in breeding and hatching, even without rains; reference is given to studies carried out regarding the role of rainfall in the breeding of Labeo rohita, Cirrhinus mrigala, Catla catla.
Resumo:
Vast barren lands are lying vacant in the semi-arid zone of India, which can effectively be utilised for fish farming. Experiments conducted in semi-arid conditions at Damdama indicated that it is possible to breed Indian major carps and common carp under controlled conditions of modern carps hatchery CIFE D-80 without depending on rain.
Resumo:
Distribution of zooplankton along two transects at Karwar and Ratnagiri, west coast of India, was studied. The standing stock of zooplankton was relatively high in the neritic zone with the highest value [358 ml/100 m super(3)] in the area off Ratnagiri due to the aggregation of fish larvae and hydromedusae. Maximum zooplankton production in these areas was noticed with the low temperature and low dissolved oxygen during postmonsoon season. At Karwar the highest biomass [188 ml/100 m super(3)] was observed from the nearshore station due to swarms of the cladoceran Penilia avirostris and the pteropod Cresis acicula when the salinity was low. The fluctuations in numerical abundance and percentage composition of all the major planktonic groups are discussed. The fishery of these areas is compared with the zooplankton standing stock.