123 resultados para Tidal flats.
Resumo:
This is the report from the Regional Fisheries Advisory Committee meeting, which was held on the 12th November 1979. The report contains the minutes of the previous meetings of the Local Fisheries Advisory Committees, information on fishing licence duties, net and fixed engine licence duties and eel fishing in tidal and estuarial waters. The Fisheries Advisory Committee was part of the Regional Water Authorities, in this case the North West Water Authority. This preceded the Environment Agency which came into existence in 1996.
Resumo:
This is the Restormel Fish Counter, Annual Report 2002 produced by the Environment Agency South West Region on March 2003. The report presents the daily upstream counts of migratory salmonids recorded on the River Fowey at Restormel Weir fish counting station (SX 107 613) in 2002. Data contained within this report covers the period of the commercial migratory salmonid net buy-back scheme and the National Spring Salmon Bylaws. The fish counter at Restormel is a resistivity based system (Logie 2100A - Aquantic limited) and is installed on the weir at Restormel approximately 2 km upstream of the tidal limit. The run pattern observed for salmon and sea trout in 2002 was generally consistent with that of previous years. The upstream salmon / large sea trout count for 2002 was 1804.
Resumo:
This is the report on the Fisheries Aspects of North West Water Authority Schemes to Increase Water Abstraction in West Cumbria by the Egremont and District Anglers’ Association. Existing river pollution and water abstraction in the Ennerdale Lake-River Ehen system is shown to have caused a major deterioration in the conditions in the Ehen fishery. This is reflected by the fact that catches of salmon, sea trout and smelts on the Ehen have all fallen to roughly 6% of the 1965 level; wich is far worse than the deterioration shown in salmon catches for S. W. Cumberland as a whole. Recommendations are made, in the light of proposals by North West Water Authority to increase water abstraction in West Cumbria, to prevent further deterioration in the Ehen fishery in the short term and to improve the situation in the longer term. It contains sections on pollution, water abstraction and fisheries background, flow statistics for and discussion of high water-droughts on the River Ehen, effects of droughts on Tidal Water and a discussion of N.W.W.A. Paper entitled `Water Resources in West Cumbria’ in the light of conditions on the River Ehen.
Resumo:
This is the report on the strategic fisheries stock assessment survey of the River Winster 1995 together with a coarse fish survey in 1994 and reference to the 1995 drought, produced by the Environment Agency North West in 1996. Salmonid production within the Winster catchment was dominated by trout although good densities of salmon juveniles were found on some main river sites. Despite suffering drought conditions for much of 1995, only salmon fry production appeared to have been affected. Coarse fish populations once found in the lower reaches of the Winster appear to have declined to very low levels with no fish sampled. This may be partly due to broken tidal gates allowing saline intrusion. It seems that the lower river was suited to the development of a recreational coarse fishery, now that the gates have been repaired. This report completes the strategic stock assessment surveys planned for the period 1992-1995. It represents the last major catchment that was surveyed to determine the current status of fisheries in the South and South West Cumbria areas.
Resumo:
This is the Kent estuary survey 18th July 1981 produced by the North West Water Authority in 1981. The report focuses on a tidal cycle survey carried out on the Kent estuary on the 18th August, 1981. The chemical water quality at Arnside Pier and at New Barns was, on the whole, acceptable. However, samples taken downstream of the outfall at low water for total coliforms and E. coli were all above the EEC mandatory level whilst those for faecal streptococci were all above the guideline value. This document shows chemical and bacteriological data analysed at Kent estuary such chloride, dissolved oxygen, BOD, ammonia, nitrate, phosphate, total coliforms, E. coli and Faecal streptococci.
Resumo:
High salinity estuaries in the southeastern U.S. have experienced increased inputs of contaminants from nonpoint source (NPS) urban runoff and decreases in habitat due to filling of wetlands and dock/bulkhead construction. Urbanization may pose significant risks to estuarine fauna, particularly crustaceans. The grass shrimp of the genus Palaemonetes, is one of the dominant species found in estuarine tidal creeks, accounting for greater than 50% of all macropelagic fauna on an annual basis. Spatial analytical and geographic information system techniques were used to determine which factors influenced the Palaemonetes population structures in a South Carolina bar-built estuary surrounded by urban development. Impacts from land use practices were investigated using concentric circular buffers around study sites. Factors investigated included sediment-associated polycyclic aromatic hydrocarbons concentration, land use classification, percent impervious surfaces, and other selected urban factors. Geographic information system and statistical modeling showed quantitative relationships between land use class and impacts on Palaemonetes density. The study suggests that habitat loss is a major factor influencing grass shrimp densities. Multiple regression modeling suggests a significant relationship between habitat alterations and Palaemonetes densities.
Resumo:
A pilot study on the characteristics of crab pot buoy line movements to assess bottlenose dolphin entanglement was conducted from 19 September to 30 September 2005 in the Charleston Harbor, Charleston, South Carolina. The objectives of this study were to determine: 1) the movements of the buoy line in the water at various tidal stages, current strengths, lengths of line, and water depth, 2) if lead-core rope was a better alternative to nylon rope, 3) and if the manner of deployment of the gear affected the suspension of the line in the water and on the bottom. Diamond braided nylon (#10) rope of varying length (20 ft. – 80 ft.) were used during 31 trials and stiffened (polypropylene lead-core) rope was used in four trials. Observations of the buoy line movements were captured with an Atlantis underwater camera attached to a Digital DPC-1000 video recorder. Results from this study showed that: 1) the method used for deployment was important in keeping the buoy line from arcing or coiling, 2) little to no arcing occurred in water current velocities of >0.20 m/s, 3) rope lengths of ≥50 ft. deployed in <10 ft. of water produced waving in the water column and arcing on the bottom, 4) slack tide was a period of increased risk of entanglement for bottlenose dolphins, and 5) poly lead-core rope was not a good alternative to nylon rope unless in deep water with strong water current velocities. This pilot study produced questions that can be used for future studies on the characteristics of buoy line movements in the crab pot fishery as it relates to bottlenose dolphin entanglements.
Resumo:
The primary objective of this study was to predict the distribution of mesophotic hard corals in the Au‘au Channel in the Main Hawaiian Islands (MHI). Mesophotic hard corals are light-dependent corals adapted to the low light conditions at approximately 30 to 150 m in depth. Several physical factors potentially influence their spatial distribution, including aragonite saturation, alkalinity, pH, currents, water temperature, hard substrate availability and the availability of light at depth. Mesophotic corals and mesophotic coral ecosystems (MCEs) have increasingly been the subject of scientific study because they are being threatened by a growing number of anthropogenic stressors. They are the focus of this spatial modeling effort because the Hawaiian Islands Humpback Whale National Marine Sanctuary (HIHWNMS) is exploring the expansion of its scope—beyond the protection of the North Pacific Humpback Whale (Megaptera novaeangliae)—to include the conservation and management of these ecosystem components. The present study helps to address this need by examining the distribution of mesophotic corals in the Au‘au Channel region. This area is located between the islands of Maui, Lanai, Molokai and Kahoolawe, and includes parts of the Kealaikahiki, Alalākeiki and Kalohi Channels. It is unique, not only in terms of its geology, but also in terms of its physical oceanography and local weather patterns. Several physical conditions make it an ideal place for mesophotic hard corals, including consistently good water quality and clarity because it is flushed by tidal currents semi-diurnally; it has low amounts of rainfall and sediment run-off from the nearby land; and it is largely protected from seasonally strong wind and wave energy. Combined, these oceanographic and weather conditions create patches of comparatively warm, calm, clear waters that remain relatively stable through time. Freely available Maximum Entropy modeling software (MaxEnt 3.3.3e) was used to create four separate maps of predicted habitat suitability for: (1) all mesophotic hard corals combined, (2) Leptoseris, (3) Montipora and (4) Porites genera. MaxEnt works by analyzing the distribution of environmental variables where species are present, so it can find other areas that meet all of the same environmental constraints. Several steps (Figure 0.1) were required to produce and validate four ensemble predictive models (i.e., models with 10 replicates each). Approximately 2,000 georeferenced records containing information about mesophotic coral occurrence and 34 environmental predictors describing the seafloor’s depth, vertical structure, available light, surface temperature, currents and distance from shoreline at three spatial scales were used to train MaxEnt. Fifty percent of the 1,989 records were randomly chosen and set aside to assess each model replicate’s performance using Receiver Operating Characteristic (ROC), Area Under the Curve (AUC) values. An additional 1,646 records were also randomly chosen and set aside to independently assess the predictive accuracy of the four ensemble models. Suitability thresholds for these models (denoting where corals were predicted to be present/absent) were chosen by finding where the maximum number of correctly predicted presence and absence records intersected on each ROC curve. Permutation importance and jackknife analysis were used to quantify the contribution of each environmental variable to the four ensemble models.
Resumo:
Models that help predict fecal coliform bacteria (FCB) levels in environmental waters can be important tools for resource managers. In this study, we used animal activity along with antibiotic resistance analysis (ARA), land cover, and other variables to build models that predict bacteria levels in coastal ponds that discharge into an estuary. Photographic wildlife monitoring was used to estimate terrestrial and aquatic wildlife activity prior to sampling. Increased duck activity was an important predictor of increased FCB in coastal ponds. Terrestrial animals like deer and raccoon, although abundant, were not significant in our model. Various land cover types, rainfall, tide, solar irradiation, air temperature, and season parameters, in combination with duck activity, were significant predictors of increased FCB. It appears that tidal ponds allow for settling of bacteria under most conditions. We propose that these models can be used to test different development styles and wildlife management techniques to reduce bacterial loading into downstream shellfish harvesting and contact recreation areas.
Resumo:
A baseline environmental characterization of the inner Kachemak Bay, Alaska was conducted using the sediment quality triad approach based on sediment chemistry, sediment toxicity, and benthic invertebrate community structure. The study area was subdivided into 5 strata based on geophysical and hydrodynamic patterns in the bay (eastern and western intertidal mud flats, eastern and western subtidal, and Homer Harbor). Three to seven locations were synoptically sampled within each stratum using a stratified random statistical design approach. Three sites near the village of Port Graham and two sites in the footprint of a proposed Homer Harbor expansion were also collected for comparison. Concentrations of over 120 organic and metallic contaminants were analyzed. Ambient toxicity was assessed using two amphipod bioassays. A detailed benthic community condition assessment was performed. Habitat parameters (depth, salinity, temperature, dissolved oxygen, sediment grain size, and organic carbon content) that influence species and contaminant distribution were also measured at each sampling site. Sediments were mostly mixed silt and sand; characteristic of high energy habitats, with pockets of muddy zones. Organic compounds (PAHs, DDTs, PCBs, cyclodienes, cyclohexanes) were detected throughout the bay but at relatively low concentrations. Tributyltin was elevated in Homer Harbor relative to the other strata. With a few exceptions, metals concentrations were relatively low and probably reflect the input of glacial runoff. Relative to other sites, Homer Harbor sites were shown to have elevated concentrations of metallic and organic contaminants. The Homer Harbor stratum however, is a deep, low energy depositional environment with fine grained sediment. Concentrations of organic contaminants measured were five to ten times higher in the harbor sites than in the open bay sites. Concentration of PAHs is of a particular interest because of the legacy of oil spills in the region. There was no evidence of residual PAHs attributable to oil spills, outside of local input, beyond the confines of the harbor. Concentrations were one to ten times below NOAA sediment quality guidelines. Selected metal concentrations were found to be relatively elevated compared to other data collected in the region. However, levels are still very low in the scale of NOAA’s sediment quality guidelines, and therefore appear to pose little or no ecotoxicity threat to biota. Infaunal assessment showed a diverse assemblage with more than 240 taxa recorded and abundances greater than 3,000 animals m-22 in all but a few locations. Annelid worms, crustaceans, snails, and clams were the dominant taxa accounting for 63 %, 19%, 5%, and 7 % respectively of total individuals. Specific benthic community assemblages were identified that were distributed based on depth and water clarity. Species richness and diversity was lower in the eastern end of the bay in the vicinity of the Fox River input. Abundance was also generally lower in the eastern portion of the study area, and in the intertidal areas near Homer. The eastern portions of the bay are stressed by the sediment load from glacial meltwater. Significant toxicity was virtually absent. Conditions at the sites immediately outside the existing Homer Harbor facility did not differ significantly from other subtidal locations in the open Kachemak Bay. The benthic fauna at Port Graham contained a significant number of species not found in Kachemak Bay. Contaminant conditions were variable depending on specific location. Selected metal concentrations were elevated at Port Graham and some were lower relative to Kachemak Bay, probably due to local geology. Some organic contaminants were accumulating at a depositional site.
Resumo:
We have studied the reproductive biology of the goldlined seabream (Rhabdosargus sarba) in the lower Swan River Estuary in Western Australia, focusing particularly on elucidating the factors influencing the duration, timing, and frequency of spawning and on determining potential annual fecundity. Our results demonstrate that 1) Rhabdosargus sarba has indeterminate fecundity, 2) oocyte hydration commences soon after dusk (ca. 18:30 h) and is complete by ca. 01:30−04:30 h and 3) fish with ovaries containing migratory nucleus oocytes, hydrated oocytes, or postovulatory follicles were caught between July and November. However, in July and August, their prevalence was low, whereas that of fish with ovaries containing substantial numbers of atretic yolk granule oocytes was high. Thus, spawning activity did not start to peak until September (early spring), when salinities were rising markedly from their winter minima. The prevalence of spawning was positively correlated with tidal height and was greatest on days when the tide changed from flood to ebb at ca. 06:00 h, i.e., just after spawning had ceased. Because our estimate of the average daily prevalence of spawning by females during the spawning season (July to November) was 36.5%, individual females were estimated to spawn, on average, at intervals of about 2.7 days and thus about 45 times during that period. Therefore, because female R. sarba with total lengths of 180, 220, and 260 mm were estimated to have batch fecundities of about 4500, 7700, and 12,400 eggs, respectively, they had potential annual fecundities of about 204,300, 346,100 and 557,500 eggs, respectively. Because spawning occurs just prior to strong ebb tides, the eggs of R. sarba are likely to be transported out of the estuary into coastal waters where salinities remain at ca. 35‰. Such downstream transport would account for the fact that, although R. sarba exhibits substantial spawning activity in the lower Swan River Estuary, few of its early juveniles are recruited into the nearshore shallow waters of this estuary.
Resumo:
We examined the spatial and temporal distribution, abundance, and growth of young-of-the-year (YOY) Atlantic croaker (Micropogonias undulatus) in Delaware Bay, one of the northernmost estuaries in which they consistently occur along the east coast of the United States. Sampling in Delaware Bay and in tidal creeks in salt marshes adjacent to the bay with otter trawls, plankton nets and weirs, between April and November 1996–99, collected approximately 85,000 YOY. Ingress of each year class into the bay and tidal creeks consistently occurred in the fall, and the first few YOY appeared in August. Larvae as small as 2–3 mm TL were collected in September and October 1996. Epibenthic individuals <25 mm TL were present each fall and again during spring of each year, but not in 1996 when low water temperatures in January and February apparently caused widespread mortality, resulting in their absence the following spring and summer. In 1998 and 1999, a second size class of smaller YOY entered the bay and tidal creeks in June. When YOY survived the winter, there was no evidence of growth until after April. Then the YOY grew rapidly through the summer in all habitats (0.8–1.4 mm/d from May through August). In the bay, they were most abundant from June to August over mud sediments in oligohaline waters. They were present in both subtidal and intertidal creeks in the marshes where they were most abundant from April to June in the mesohaline portion of the lower bay. The larger YOY began egressing out of the marshes in late summer, and the entire year class left the tidal creeks at lengths of 100–200 mm TL by October or November when the next year class was ingressing. These patterns of seasonal distribution and abundance in Delaware Bay and the adjacent marshes are similar to those observed in more southern estuaries along the east coast; however, growth is faster—in keeping with that in other northern estuaries.
Resumo:
Offshore winter-spawned fishes dominate the nekton of south-eastern United States estuaries. Their juveniles reside for several months in shallow, soft bottom estuarine creeks and bays called primary nursery areas. Despite similarity in many nursery characteristics, there is, between and within species, variability in the occupation of these habitats. Whether all occupied habitats are equally valuable to individuals of the same species or whether most recruiting juveniles end up in the best habitats is not known. If nursery quality varies, then factors controlling variation in pre-settlement fish distribution are important to year-class success. If nursery areas have similar values, interannual variation in distribution across nursery creeks should have less effect on population sizes or production. I used early nursery period age-specific growth and mortality rates of spot (Leiostomus xanthurus) and Atlantic croaker (Micropogonias undulatus)—two dominant estuarine fishes—to assess relative habitat quality across a wide variety of nursery conditions, assuming that fish growth and mortality rates were direct reflections of overall physical and biological conditions in the nurseries. I tested the hypothesis that habitat quality varies for these fishes by comparing growth and mortality rates and distribution patterns across a wide range of typical nursery habitats at extreme ends of two systems. Juvenile spot and Atlantic croaker were collected from 10 creeks in the Cape Fear River estuary and from 18 creeks in the Pamlico Sound system, North Carolina, during the 1987 recruitment season (mid-March–mid-June). Sampled creeks were similar in size, depth, and substrates but varied in salinities, tidal regimes, and distances from inlets. Spot was widely distributed among all the estuarine creeks, but was least abundant in the creeks in middle reaches of both systems. Atlantic croaker occurred in the greatest abundance in oligohaline creeks of both systems. Instantaneous growth rates derived from daily otolith ages were generally similar for all creeks and for both species, except that spot exhibited a short-term growth depression in the upriver Pamlico system creeks—perhaps the result of the long migration distance of this species to this area. Spot and Atlantic croaker from upriver oligohaline creeks exhibited lower mortality rates than fish from downstream polyhaline creeks. These results indicated that even though growth was similar at the ends of the estuaries, the upstream habitats provided conditions that may optimize fitness through improved survival.
Resumo:
Higher resolution time-stratigraphic records suggest correlation of lower frequency paleoclimatic events with Milankovitch obliquity/precessional cycles and of higher frequency events with the evidently resonance-related Pettersson maximum tidal force (MTF) model. Subsequently published records, mainly pollen, seemingly confirm that atmospheric resonances may have modulated past climatic changes in phase with average MTF cycles of 1668, 1112, and 556 years, as calculated in anomalistic years from planetary movements by Stacey. Stacey accepts Pettersson's dating of AD 1433 (517 YBP) for the last major perihelian spring tide based solely on calculations of moon- and earth-orbital relations to the sun. Use of AD 1433 as an origin for the tidal resonance model seemingly continues to provide a best fit for the timing of cyclical patterns in the presented paleoclimate time series.
Resumo:
Electrophoretic and serological studies of foot muscle protein of three species of Cerithiacea (Telescopium telescopium, Cerithidea fluviatilis and C. obtusum) were carried out to understand their relationships. Living specimens were collected from mud flats and mangrove swamps off Portonovo. Polyacrylamide electrophoresis of proteins from foot muscle extract of T. telescopium, C. fluviatilis and C. obtusum showed that the former had a different densitometric profile as well as more number of protein bands; but the later two species showed a closer related pattern as well as lesser number of protein bands. At the same time these two species are distinguished from each other in their total number of bands and Rf values. Immunological studies using micro-Ouchterlony double diffusion tests which absorbed antiserum indicated that C. fluviatilis and C. obtusum were more closely related as revealed by an identity reactions than T. telesopium as shown by non-identity reactions. Results are discussed in relation to ecological and morphological adaptations