134 resultados para Staten Island


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): The data of this paper differ from the Jones and Bradley papers [of 1982-1986] in that it represents an attempt to select thermal pollution free records rather than to include all available records. The specific long-term trends that this paper is trying to avoid are those illustrated by the heat islands of fast growing urban locations. One other major difference in this paper is that all of the records reported of this study are complete for the entire study period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first dedicated collections of deep-water (>80 m) sponges from the central Aleutian Islands revealed a rich fauna including 28 novel species and geographical range extensions for 53 others. Based on these collections and the published literature, we now confirm the presence of 125 species (or subspecies)of deep-water sponges in the Aleutian Islands. Clearly the deep-water sponge fauna of the Aleutian Islands is extraordinarily rich and largely understudied. Submersible observations revealed that sponges, rather than deep-water corals, are the dominant feature shaping benthic habitats in the region and that they provide important refuge habitat for many species of fish and invertebrates including juvenile rockfish (Sebastes spp.) and king crabs (Lithodes sp). Examination of video footage collected along 127 km of the seafloor further indicate that there are likely hundreds of species still uncollected from the region, and many unknown to science. Furthermore, sponges are extremely fragile and easily damaged by contact with fishing gear. High rates of fishery bycatch clearly indicate a strong interaction between existing fisheries and sponge habitat. Bycatch in fisheries and fisheries-independent surveys can be a major source of information on the location of the sponge fauna, but current monitoring programs are greatly hampered by the inability of deck personnel to identify bycatch. This guide contains detailed species descriptions for 112 sponges collected in Alaska, principally in the central Aleutian Islands. It addresses bycatch identification challenges by providing fisheries observers and scientists with the information necessary to adequately identify sponge fauna. Using that identification data, areas of high abundance can be mapped and the locations of indicator species of vulnerable marine ecosystems can be determined. The guide is also designed for use by scientists making observations of the fauna in situ with submersibles, including remotely operated vehicles and autonomous underwater vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOAA’s Center for Coastal Monitoring and Assessment’s Biogeography Branch has mapped and characterized large portions of the coral reef ecosystems inside the U.S. coastal and territorial waters, including the U.S. Caribbean. The complementary protocols used in these efforts have enabled scientists and managers to quantitatively compare different marine ecosystems in tropical U.S. waters. The Biogeography Branch used these same general protocols to generate three seamless habitat maps of the Bank/Shelf (i.e., from 0 ≤50 meters) and the Bank/Shelf Escarpment (i.e., from 50 ≤1,000 meters and from 1,000 ≤ 1,830 meters) inside Buck Island Reef National Monument (BIRNM). While this mapping effort marks the fourth time that the shallow-water habitats of BIRNM have been mapped, it is the first time habitats deeper than 30 meters (m) have been characterized. Consequently, this habitat map provides information on the distribution of mesophotic and deep-water coral reef ecosystems and serves as a spatial baseline for monitoring change in the Monument. A benthic habitat map was developed for approximately 74.3 square kilometers or 98% of the BIRNM using a combination of semi-automated and manual classification methods. The remaining 2% was not mapped due to lack of imagery in the western part of the Monument at depths ranging from 1,000 to 1,400 meters. Habitats were interpreted from orthophotographs, LiDAR (Light Detection and Ranging) imagery and four different types of MBES (Multibeam Echosounder) imagery. Three minimum mapping units (MMUs) (100, 1,000 and 5,000 square meters) were used because of the wide range of depths present in the Monument. The majority of the area that was characterized was deeper than 30 m on the Bank/Shelf Escarpment. This escarpment area was dominated by uncolonized sand which transitioned to mud as depth increased. Bedrock was exposed in some areas of the escarpment, where steep slopes prevented sediment deposition. Mesophotic corals were seen in the underwater video, but were too sparsely distributed to be reliably mapped from the source imagery. Habitats on the Bank/Shelf were much more variable than those seen on the Bank/Shelf Escarpment. The majority of this shelf area was comprised of coral reef and hardbottom habitat dominated by various forms of turf, fleshy, coralline or filamentous algae. Even though algae was the dominant biological cover type, nearly a quarter (24.3%) of the Monument’s Bank/Shelf benthos hosted a cover of 10%-<50% live coral. In total, 198 unique combinations of habitat classes describing the geography, geology and biology of the sea-floor were identified from the three types of imagery listed above. No thematic accuracy assessment was conducted for areas deeper than about 50 meters, most of which was located in the Bank/Shelf Escarpment. The thematic accuracy of classes in waters shallower than approximately 50 meters ranged from 81.4% to 94.4%. These thematic accuracies are similar to those reported for other NOAA benthic habitat mapping efforts in St. John (>80%), the Main Eight Hawaiian Islands (>84.0%) and the Republic of Palau (>80.0%). These digital maps products can be used with confidence by scientists and resource managers for a multitude of different applications, including structuring monitoring programs, supporting management decisions, and establishing and managing marine conservation areas. The final deliverables for this project, including the benthic habitat maps, source imagery and in situ field data, are available to the public on a NOAA Biogeography Branch website (http://ccma.nos.noaa.gov/ecosystems/coralreef/stcroix.aspx) and through an interactive, web-based map application (http://ccma.nos.noaa.gov/explorer/biomapper/biomapper.html?id=BUIS). This report documents the process and methods used to create the shallow to deep-water benthic habitat maps for BIRNM. Chapter 1 provides a short introduction to BIRNM, including its history, marine life and ongoing research activities. Chapter 2 describes the benthic habitat classification scheme used to partition the different habitats into ecologically relevant groups. Chapter 3 explains the steps required to create a benthic habitat map using a combination of semi-automated and visual classification techniques. Chapter 4 details the steps used in the accuracy assessment and reports on the thematic accuracy of the final shallow-water map. Chapter 5 summarizes the type and abundance of each habitat class found inside BIRNM, how these habitats compare to past habitat maps and outlines how these new habitat maps may be used to inform future management activities.