222 resultados para LABORATORY-REARED LARVAE
Resumo:
Data from ichthyoplankton surveys conducted in 1972 and from 1977 to 1999 (no data were collected in 1980) by the Alaska Fisheries Science Center (NOAA, NMFS) in the western Gulf of Alaska were used to examine the timing of spawning, geographic distribution and abundance, and the vertical distribution of eggs and larvae of flathead sole (Hippoglossoides elassodon). In the western Gulf of Alaska, flathead sole spawning began in early April and peaked from early to mid-May on the continental shelf. It progressed in a southwesterly direction along the Alaska Peninsula where three main areas of flathead sole spawning were indentified: near the Kenai Peninsula, in Shelikof Strait, and between the Shumagin Islands and Unimak Island. Flathead sole eggs are pelagic, and their depth distribution may be a function of their developmental stage. Data from MOCNESS tows indicated that eggs sink near time of hatching and the larvae rise to the surface to feed. The geographic distribution of larvae followed a pattern similar to the distribution of eggs, only it shifted about one month later. Larval abundance peaked from early to mid-June in the southern portion of Shelikof Strait. Biological and environmental factors may help to retain flathead sole larvae on the continental shelf near their juvenile nursery areas.
Resumo:
Inhibitory activity of a marine pigmented bacterium - Alteromonas sp. - isolated from Penaeus monodon Fabricius larva against pathogenic and environmental isolates of Vibrio harveyi was studied. All the isolates were inhibited to varying degrees by Alteromonas sp. in vitro. The antibacterial substance produced by the Alteromonas sp. was soluble in organic solvent and closely bound to the external surface of bacterial cells. The antibacterial Alteromonas sp., when allowed to colonize on shrimp larvae, suppressed the activity of V. harveyi M3 and reduced mortality of P. monodon larvae in vivo.
Resumo:
Rearing of anemonefishes is now relatively routine compared to the culture of cardinalfishes (Apogonidae) or angelfishes (Pomacanthidae). However, it is still a labor intensive, time intensive and expensive procedure. To reduce time and cost of rearing anemonefishes, experiments were undertaken to improve the methods for rearing Amphiprion melanopus. These experiments were conducted to determine the effect of the length of photoperiod on larval duration, growth to metamorphosis and early juvenile phase. Growth of larvae was significantly faster and the duration of the larval phase was significantly shorter, under a photoperiod of 16 hours light/8 hours dark, compared to the photoperiods of 12 hours light/12 hours dark and 24 hours light/0 hours dark.
Resumo:
The results of a study on length-weight relationships of Penaeus monodon, reared in fertilized ponds in Kerala, India, and fed three different supplementary feeds are presented.
Resumo:
A limnological study of the artificial fish pond and an analysis of the stomach contents of pacu (Piaractus mesopotamicus) larvae of 2 to 45 days age were made for a period of 45 days to evaluate their feeding preferences. A preference for chlorophytes and rotifers were noted, while other planktonic species remained constant in the stomach contents. Some limnological variables were found to have strong influence on the feeding behavior of the pacu. A preference for feeding on smaller species in the first few days of larval development was also noted.
Resumo:
Distribution of eggs and larvae and feeding and growth of larvae of Japanese Spanish mackerel (Scomberomorus niphonius) were investigated in relation to their prey in the Sea of Hiuchi, the Seto Inland Sea, Japan, in 1995 and 1996. The abundance of S. niphonius eggs and larvae peaked in late May, corresponding with that of clupeid larvae, the major prey organisms of S. niphonius larvae. The eggs were abundant in the northwestern waters and the larvae were abundant in the southern waters in late May in both years, indicating a southward drift during egg and yolksac stages by residual f low in the central part of the Sea of Hiuchi. Abundance of clupeid larvae in southern waters, where S. niphonius larvae were abundant, may indicate a spawning strategy on the part of first-feeding S. niphonius larvae to encounter the spatial and temporal peak in ichthyoplankton prey abundance in the Seto Inland Sea. Abundance of the clupeid larvae was higher in 1995 than in 1996. Feeding incidence (percentage of stomachs with food; 85.3% in 1995 and 67.7% in 1996) and mean growth rate estimated from otolith daily increments (1.05 mm/d in 1995 and 0.85 mm/d in 1996) of S. niphonius larvae in late May were significantly higher in 1995. Young-of-the-year S. niphonius abundance and catch per unit of fishing effort of 1-year-old S. niphonius in the Sea of Hiuchi was higher in 1995, indicating a more successful recruitment in this year. Spatial and temporal correspondence with high ichthyoplankton prey concentration was considered one of the important determinants for the feeding success, growth, and survival of S. niphonius larvae.
Resumo:
The year 1985 was one of celebration for the Woods Hole Laboratory of the National Marine Fisheries Service's Northeast Fisheries Center. The reason was the one hundredth anniversary of the completion and occupation of the first facility in the world dedicated to marine fisheries research. Spencer Fullerton Baird, Assistant Secretary of the Smithsonian Institution, and newly appointed first Commissioner of the nascent U.S. Commission of Fish and Fisheries visited Woods Hole in the summer of 1871 to establish a base from which to begin the investigations mandated by Congress when they established the "Fish Commission." During the following three summers (1872-74), operations were conducted from several other localities along the New England coast. During the course of those four years Baird determined that Woods Hole offered the most suitable natural and physical amenities for the investigations being conducted by the Fish Commission at that time, and for those envisioned for the future. The base for Commission operations was returned to Woods Hole in the summer of 1875 and has remained there ever since, through times fair and foul and several agency changes.
Resumo:
The genesis and the early history of the Woods Hole Laboratory (WHL), to a lesser extent the Marine Biological Laboratory (MBL), and to some degree the Woods Hole Oceanographic Institution (WHOI), were elegantly covered by Paul S. Galtsoff (1962) in his BCF Circular "The Story of the Bureau of Commercial Fisheries Biological Laboratory, Woods Hole, Massachusetts." It covers the period from the beginning in 1871 to 1958. Galtsoffs more than 35-year career in the fishery service was spent almost entirely in Woods Hole. I will only briefly touch on that portion of the Laboratory's history covered by Galtsoff. Woods Hole, as a center of marine science, was conceived and implemented largely by one man, Spencer Fullerton Baird, at that time Assistant Secretary of the Smithsonian and who was also instrumental in the establishment of the National Museum and Permanent Secretary of the newly established American Association for the Advancement of Science. He was appointed by President Ulysses S. Grant in 1871 as the first U.S. Commissioner of Fisheries. Fisheries research began here as early as 1871, but a permanent station did not exist until 1885.
Resumo:
A review of the relative productivity and value of the shad fisheries of North America as reflected in recorded commercial catches. A review of reasons for the decline that are biological and socioeconomic. Factors that have been held responsible are: pollution; destruction or impairment of spawning and nursery areas; overfishing; hydroelectric and canal dams; natural fluctuations in abundance. Natural catastrophes, parasites, and predators are not considered important in causing the decrease in commercial production. Attempts to rehabilitate the fisheries by various means of stocking artificially-reared fry and pond-reared fingerling shad, appear to have failed in every instance. Introduction of shad fry on the Pacific Coast has resulted in a major fishery. The most significant program is a controlled catch management plan, operating at this time [1953] only in Maryland.
The role of substrate, flow and larval supply to recruitment of the red abalone (Haliotis rufescens)
Resumo:
Precipitous declines in wild populations of the red abalone Haliotis rufescens and the eventual closure of the commercial and southern recreational fishery have led to renewed interest in supplementing wild stocks with hatchery-raised individuals. Most work to date has focused on releasing small juveniles and has had limited success. Although much is known about larval settlement, juvenile survivorship and growth of abalone, there is scanty information on natural processes in the field. The failure of many regulated fisheries worldwide suggests that both the larval and juvenile stages may be important in determining the future population, and that early juvenile mortality is more important than previously believed. This paper presents a series of experiments designed to examine factors and mechanisms that could affect settlement, survivorship, and growth of larvae and early post-settlers in the field. Laboratory trials under different flow regimes showed that red abalone larvae settled preferentially on substrates encrusted with coralline algae, and that settlement was rapid when exposed to crusts compared to other surfaces. Urchin grazing of films appeared to facilitate abalone settlement but only when urchins were removed. Initial field experiments showed that released larvae settled on natural cobble rock, and that settlement was at least one order of magnitude greater when settlement habitats were tented. I then examined post-settlement survivorship at one and two days after settlement, and found that although there was a large amount of variation, on average 10% of released larvae were found as newly-settled recruits after 1 day. Survivorship and growth of recruits were followed over at least one month in both Spring and Fall. Abalone settled at higher densities, survived better and grew faster in the warmer Fall months than in the Spring. The density of month-old abalone recruits was correlated with density of naturally-occurring gastropods in the Spring, but not in the Fall. These results suggest that settlement and survivorship can be extremely variable across space and time, and that oceanographic and local biotic conditions play a role and should be considered when planning larval seeding.