176 resultados para Biological specimens
Resumo:
Booklet telling the story of the FBA from its founding in 1929 until its Golden Jubilee in 1979. The booklet aimed to produce a readable account of those aspects of freshwater biology that have been among the main themes of the Association's research, as well as some aspects of its history and the philosophy guiding its foundation. The publication includes many images of the FBA's work and history as well as images and illustrations on lake ecology and applied science.
Resumo:
Size distribution within re- ported landings is an important aspect of northern Gulf of Mexico penaeid shrimp stock assessments. It reflects shrimp population characteristics such as numerical abundance of various sizes, age structure, and vital rates (e.g. recruitment, growth, and mortality), as well as effects of fishing, fishing power, fishing practices, sampling, size-grading, etc. The usual measure of shrimp size in archived landings data is count (C) the number of shrimp tails (abdomen or edible portion) per pound (0.4536 kg). Shrimp are marketed and landings reported in pounds within tail count categories. Statistically, these count categories are count class intervals or bins with upper and lower limits expressed in C. Count categories vary in width, overlap, and frequency of occurrence within the landings. The upper and lower limits of most count class intervals can be transformed to lower and upper limits (respectively) of class intervals expressed in pounds per shrimp tail, w, the reciprocal of C (i.e. w = 1/C). Age based stock assessments have relied on various algorithms to estimate numbers of shrimp from pounds landed within count categories. These algorithms required un- derlying explicit or implicit assumptions about the distribution of C or w. However, no attempts were made to assess the actual distribution of C or w. Therefore, validity of the algorithms and assumptions could not be determined. When different algorithms were applied to landings within the same size categories, they produced different estimates of numbers of shrimp. This paper demonstrates a method of simulating the distribution of w in reported biological year landings of shrimp. We used, as examples, landings of brown shrimp, Farfantepenaeus aztecus, from the northern Gulf of Mexico fishery in biological years 1986–2006. Brown shrimp biological year, Ti, is defined as beginning on 1 May of the same calendar year as Ti and ending on 30 April of the next calendar year, where subscript i is the place marker for biological year. Biological year landings encompass most if not all of the brown shrimp life cycle and life span. Simulated distributions of w reflect all factors influencing sizes of brown shrimp in the landings within a given biological year. Our method does not require a priori assumptions about the parent distributions of w or C, and it takes into account the variability in width, overlap, and frequency of occurrence of count categories within the landings. Simulated biological year distributions of w can be transformed to equivalent distributions of C. Our method may be useful in future testing of previously applied algorithms and development of new estimators based on statistical estimation theory and the underlying distribution of w or C. We also examine some applications of biological year distributions of w, and additional variables derived from them.
Resumo:
In the 1500’s, the waters of Venezuela and to a lesser extent Colombia produced more natural pearls than any place ever produced in the world in any succeeding century. Atlantic pearl-oysters, Pinctata imbricata Röding 1798, were harvested almost entirely by divers. The pearls from them were exported to Spain and other European countries. By the end of the 1500’s, the pearl oysters had become much scarcer, and little harvesting took place during the 1600’s and 1700’s. Harvesting began to accelerate slowly in the mid 1800’s and has since continued but at a much lower rate than in the 1500’s. The harvesting methods have been hand collecting by divers until the early 1960’s, dredging from the 1500’s to the present, and hardhat diving from 1912 to the early 1960’s. Since the mid 1900’s, Japan and other countries of the western Pacific rim have inundated world markets with cultured pearls that are of better quality and are cheaper than natural pearls, and the marketing of natural pearls has nearly ended. The pearl oyster fishery in Colombia ended in the 1940’s, but it has continued in Venezuela with the fishermen selling the meats to support themselves; previously most meats had been discarded. A small quantity of pearls is now taken, and the fishery, which comprised about 3,000 fishermen in 1947, comprised about 300 in 2002.
Resumo:
One particular habitat type in the Middle Atlantic Bight is not well recognized among fishery scientists and managers, although it is will known and used by recreational and commercial fisheries. This habitat consists of a variety of hard-surface, elevated relief "reef" or reef-like environments that are widely distributed across the predominantly flat or undulating, sandy areas of the Bight and include both natural rocky areas and man-made structures, e.g. shipwrecks and artificial reefs. Although there are natural rock and shellfish reefs in southern New England coastal waters and estuaries throughout the Bight, most reef habitats in the region appear to be man-made reef habitat modification/creation may be increasing. Very little effort has been devoted to the study of this habitat's distribution, abundance, use by living marine resources and associated biological communities (except on estuarine oyster reefs) and fishery value or management. This poorly studied and surveyed habitat can provide fish refuge from trawls and can be a factor in studies of the distribution and abundance of a variety of reef-associated fishery resources. This review provides a preliminary summary of information found on relative distribution and abundance of reef habitat in the Bight, the living marine resources and biological communities that commonly use it, threats to this habitat and its biological resources, and the value or potential value of artificial reefs to fishery or habitat and its biological resources, and the value or potential value of artificial reefs to fishery or habitat managers. The purpose of the review is to initiate an awareness among resource managers about this habitat, its role in resource management, and the need for research.
Resumo:
Alaska plaice, Pleuronectes quadrituberculatus, is one of the major flatfishes in the eastern Bering Sea ecosystem and is most highly concentrated in the shallow continental shelf of the eastern Bering Sea. Annual commercial catches have ranged from less than 1,000 metric tons (t) in 1963 to 62,000 t in 1988. Alaska plaice is a relatively large flatfish averaging about 32 cm in length and 390 g in weight in commercial catches. They are distributed from nearshore waters to a depth of about 100 m in the eastern Bering Sea during summer, but move to deeper continental shelf waters in winter to escape sea ice and cold water temperatures. Being a long-lived species (>30 years), they have a relatively low natural mortality rate estimated at 0.20. Maturing at about age 7, Alaska plaice spawn from April through June on hard sandy substrates of the shelf region, primarily around the 100 m isobath. Prey items primarily include polychaetes and other marine worms. In comparison with other flatfish, Alaska plaice and rock sole, Pleuronectes bilineatus, have similar diets but different habitat preferences with separate areas of peak population density which may minimize interspecific competition. Yellowfin sole, Pleuronectes asper, while sharing similar habitat, differs from these two species because of the variety of prey items in its diet. Competition for food resources among the three species appears to be low. The resource has experienced light exploitation since 1963 and is currently in good condition. Based on the results of demersal trawl surveys and age-structured analyses, the exploitable biomass increased from 1971 through the mid-1980’s before decreasing to the 1997 level of 500,000 t. The recommended 1998 harvest level, Allowable Biological Catch, was calculated from the Baranov catch equation based on the FMSY harvest level and the projected 1997 biomass, resulting in a commercial harvest of 69,000 t, or about 16% of the estimated exploitable biomass.
Resumo:
Yellowfin sole, Pleuronectes asper, is the second most abundant flatfish in the North Pacific Ocean and is most highly concentrated in the eastern Bering Sea. It has been a target species in the eastern Bering Sea since the mid-1950's, initially by foreign distant-water fisheries but more recently by U.S. fisheries. Annual commercial catches since 1959 have ranged from 42,000 to 554,000 metric tons (t). Yellowfin sole is a relatively small flatfish averaging about 26 cm in length and 200 g in weight in commercial catches. It is distributed from nearshore waters to depths of about 100 m in the eastern Bering Sea in summer, but moves to deeper water in winter to escape sea ice. Yellowfin sole is a benthopelagic feeder. It is a longlived species (>20 years) with a correspondingly low natural mortality rate estimated at 0.12. After being overexploited during the early years of the fishery and suffering a substantial decline in stock abundance, the resource has recovered and is currently in excellent condition. The biomass during the 1980's may have been as high as, if not higher than, that at the beginning of the fishery. Based on results of demersal trawl surveys and two age structured models, the current exploitable biomass has been estimated to range between 1.9 and 2.6 million t. Appropriate harvest strategies were investigated under a range of possible recruitment levels. The recommended harvest level was calculated by multiplying the yield derived from the FOI harvest level (161 g at F = 0.14) hy an average recruitment value resulting in a commercial harvest of 276,900 t, or about 14% of the estimated exploitable biomass.
Resumo:
Biological implications of two managment options (the closed corridor and the recommended shortened season (Option 7) options) for the Atlantic menhaden, Brevoortia tyrannus, fishery are reported based on purse-seine landings and port sampling data from 1970 to 1984 and captain's daily fishing reports from 1978 to 1982. Large catches of age-O menhaden raise concern for growth overfishing. Area-specific yield-per-recruit analyses are used to investigate the biological consequences of these management options. The closed corridor option indicates coastwide gains in yield-per-recruit ranging from 0.3 to 7.2% depending on changes in fishing activity with most areas showing gains. The shortened fishing season indicates coastwide gains in yield per recruit ranging from O. 4 to 10.2% depending onf ishing year with most geographic areas showing gains. The shortened fishing season option offers the greatest gains when large numbers ofy oung menhaden would be caught late in the fishing year, while gains from the closed corridor option depend on how the fishing fleet responds to that management plan. The shortened season offers greater potential coastwide gains to the fishery, but also may result in greater losses to the North Carolina fall fishery. The analytical approach is applicable to the management of other coastal migratory fish stocks that fall under the Atlantic States Marine Fisheries Commission or other interstate management groups.
Resumo:
This is the River Dart Biological Survey from 10th June to 15th July 1968 by the Devon River Authority. This survey was undertaken to investigate the invertebrate bottom fauna of the river and to assess the condition of the river with regard to pollution. It describes the environmental conditions of the River Dart and the biological sampling method used, plus a brief conclusion of the survey. It also contains tables with the different species present and abundance on each sampling stations.
Resumo:
This is the Intensive biological survey of the Glaze Brook catchment May 1981 report produced by the North West Water Authority in 1981. The aim of this report is to identify those pollution problems not identified during the routine biological water quality surveys, and to check the suitability of the routine biological sampling point. This report looks at an intensive biological water quality survey of the Glaze Brook catchment which was carried out by Biol. (S) on 13th-15th May, 1981. Kick samples of invertebrates were taken at 5 sites and all invertebrates were identified and counted in the field. The most significant water quality observations in the report were from: Borsdane brook, Pennington brook, Glaze brook, Amberswood brook, Cunningham brook, Old Mill brook, Shakerley brook, Astley brook and Shaw brook.
Resumo:
This is the Intensive biological survey of the Glaze Brook catchment: Supplementary report on the water quality as indicated by macrophytes produced by the North West Water Authority in 1981. This report describes the results of the macrophyte survey including data on their distribution and the prevailing water quality (nutrient status and toxic metal contamination) It supplements the initial report,TS-BS-81-3, which described the macroinvertebrate survey. The aim of this project is to describe the distribution of macrophytes within the river, paying attention to areas where weed growth may directly affect water quality or amenity usage, and describe the distribution of toxic metals. In the survey 16 sites of 500 m lengths of river were analysed, noting the relative abundance and percentage cover of the macrophytes present, plant score and Community Description Class (C.D.C.) were computed.
Resumo:
This is the Biological survey of River Teign and tributaries with references to the discharge of ball clay wastes, document produced by South West Water Authority in 1973. This report focuses on on-site assessment of the benthic macro-invertebrates of the lower River Teign, River Bovey, Ugbrooke Stream and Blatchford Brook was undertaken on 19th and 22nd August 1977 to assess the effects of discharges from ball clay mining premises. Inspection of aquatic fauna in the field is of necessity, less extensive than laboratory identification of sorted samples, so that the resulting data underestimates the water quality. This is more pronounced in the Chandler Score than in the Trent Biotic Index which does not take account of species abundance. Chandler should thus be interpreted by the trends described rather than by absolute values calculated.
Resumo:
This is the Biological survey of the River Teign and tributaries, with reference to the effect of ball clay discharges report produced by South West Water Authority in 1979. A survey of the macroinvertebrate riffle fauna in the Ball Clay mining area of the Bovey Basin, following a period of low rainfall, indicated that the River Bovey and the River Teign between Chudleigh and Teign Bridge, Newton Abbot were of good quality. Further downstream, the R. Teign and the lower reaches of the Ugbrooke Stream were identified as being of doubtful quality with the discharge from ECC Broadway continuing to give cause for concern.
Resumo:
The possible differences between sexes in patterns of morphological variation in geographical space have been explored only in gonochorist freshwater species. We explored patterns of body shape variation in geographical space in a marine sequential hermaphrodite species, Coris julis (L. 1758), analyzing variation both within and between colour phases, through the use of geometric morphometrics and spatially-explicit statistical analyses. We also tested for the association of body shape with two environmental variables: temperature and chlorophyll a concentration, as obtained from time-series of satellite-derived data. Both colour phases showed a significant morphological variation in geographical space and patterns of variation divergent between phases. Although the morphological variation was qualitatively similar, individuals in the initial colour phase showed a more marked variation than individuals in the terminal phase. Body shape showed a weak but significant correlation with environmental variables, which was more pronounced in primary specimens.