644 resultados para marine foragers
Resumo:
A basic analysis of sources, dates, authors for an Environmental Science Laboratory based at waters edge. (22 powerpoint slides)
Resumo:
One goal of Gray’s Reef National Marine Sanctuary (NMS) is to protect the unique community found within the Sanctuary’s boundaries. An understanding of the ecological interactions, including trophic structure, among these organisms is necessary to realize this goal. Therefore, diet information for 184 fish species was summarized from 113 published studies. Among the fish included are 84 fish species currently known to reside in Gray’s Reef NMS. The locations of these studies ranged from the Atlantic Ocean off the coast of the northeast United States to northern Brazil, the Gulf of Mexico, and the Caribbean. All of the species described in this bibliography occur in the southeast United States and are, therefore, current or potential residents of Gray’s Reef National Marine Sanctuary. Each entry includes the objectives, brief methods, and conclusions of the article. The bibliography is also indexed by species. (PDF contains 64 pages.)
Resumo:
Although ambient (background) noise in the ocean is a topic that has been widely studied since pre-World War II, the effects of noise on marine organisms has only been a focus of concern for the last 25 years. The main point of concern has been the potential of noise to affect the health and behavior of marine mammals. The Stellwagen Bank National Marine Sanctuary (SBNMS) is a site where the degradation of habitat due to increasing noise levels is a concern because it is a feeding ground and summer haven for numerous species of marine mammals. Ambient noise in the ocean is defined as “the part of the total noise background observed with an omnidirectional hydrophone.” It is an inherent characteristic of the medium having no specific point source. Ambient noise is comprised of a number of components that contribute to the “noise level” in varying degrees depending on where the noise is being measured. This report describes the current understanding of ambient noise and existing levels in the Stellwagen Bank National Marine Sanctuary. (PDF contains 32 pages.)
Resumo:
Marine reserves, often referred to as no-take MPAs, are defined as areas within which human activities that can result in the removal or alteration of biotic and abiotic components of an ecosystem are prohibited or greatly restricted (NRC 2001). Activities typically curtailed within a marine reserve are extraction of organisms (e.g., commercial and recreational fishing, kelp harvesting, commercial collecting), mariculture, and those activities that can alter oceanographic or geologic attributes of the habitat (e.g., mining, shore-based industrial-related intake and discharges of seawater and effluent). Usually, marine reserves are established to conserve biodiversity or enhance nearby fishery resources. Thus, goals and objectives of marine reserves can be inferred, even if they are not specifically articulated at the time of reserve formation. In this report, we review information about the effectiveness of the three marine reserves in the Monterey Bay National Marine Sanctuary (Hopkins Marine Life Refuge, Point Lobos Ecological Reserve, Big Creek Ecological Reserve), and the one in the Channel Islands National Marine Sanctuary (the natural area on the north side of East Anacapa Island). Our efforts to objectively evaluate reserves in Central California relative to reserve theory were greatly hampered for four primary reasons; (1) few of the existing marine reserves were created with clearly articulated goals or objectives, (2) relatively few studies of the ecological consequences of existing reserves have been conducted, (3) no studies to date encompass the spatial and temporal scope needed to identify ecosystem-wide effects of reserve protection, and (4) there are almost no studies that describe the social and economic consequences of existing reserves. To overcome these obstacles, we used several methods to evaluate the effectiveness of subtidal marine reserves in Central California. We first conducted a literature review to find out what research has been conducted in all marine reserves in Central California (Appendix 1). We then reviewed the scientific literature that relates to marine reserve theory to help define criteria to use as benchmarks for evaluation. A recent National Research Council (2001) report summarized expected reserve benefits and provided the criteria we used for evaluation of effectiveness. The next step was to identify the research projects in this region that collected information in a way that enabled us to evaluate reserve theory relative to marine reserves in Central California. Chapters 1-4 in this report provide summaries of those research projects. Contained within these chapters are evaluations of reserve effectiveness for meeting specific objectives. As few studies exist that pertain to reserve theory in Central California, we reviewed studies of marine reserves in other temperate and tropical ecosystems to determine if there were lessons to be learned from other parts of the world (Chapter 5). We also included a discussion of social and economic considerations germane to the public policy decision-making processes associated with marine reserves (Chapter 6). After reviewing all of these resources, we provided a summary of the ecological benefits that could be expected from existing reserves in Central California. The summary is presented in Part II of this report. (PDF contains 133 pages.)
Resumo:
In Central California, and elsewhere around the world, a great deal of discussion is occurring about the use of marine protected areas (MPAs) as a tool to help manage marine resources. This discussion is taking place because there is growing evidence that humans have depleted marine resources in many parts of the world, often despite strong regulatory efforts. Moreover, there is also mounting evidence that the degradation of marine resources began long ago, and we do not fully realize how much humans have altered “natural” environments. This uncertainty has led people to discuss the use of MPAs as a precautionary tool to prevent depletion or extinction of marine resources, and as a means of redressing past damages. The discussion about the use of marine reserves is increasing in intensity in California because several resource management agencies are considering reserves as they create or revise management plans. Often, the discussions surrounding this important public policy debate lead to questions about the biological or ecological value of existing marine protected areas. More than 100 MPAs exist along the coast of California. Many of these were established arbitrarily and lack specific purposes. Some California marine protected areas also have co-occurring or overlapping boundaries, have conflicting designations for use, and have conflicting rules and regulations. Because few of the existing marine protected areas have clearly articulated goals or objectives, however, it is difficult or impossible to evaluate their ecological effectiveness. (PDF contains 18 pages.)
Resumo:
The Olympic Coast National Marine Sanctuary (OCNMS or Sanctuary) planned and organized the 1998 Research Workshop as part of its mission to protect and improve understanding of its marine resources through research and education programs. The Sanctuary is also mandated to coordinate and facilitate information exchanges and sponsors periodic research workshops to that end. The goals of the 1998 Research Workshop were as follows: A. Highlight and prioritize research needs for the Sanctuary relative to the development of a framework for a five-year research plan; B. Build on results from the Olympic Coast Marine Research Workshop of 1996; C. Present recent/ongoing research; D. Share multi-disciplinary information; E. Select priority sites for multi-disciplinary studies; and F. Promote student participation and research. (PDF contains 93 pages.)
Resumo:
The Second National Workshop on Marine Mammal Research and Monitoring in the National Marine Sanctuaries was held on 28 November 1999 in Maui, Hawaii. The workshop preceded the Thirteenth Biennial Conference on the Biology of Marine Mammals, and provided an opportunity to review and promote marine mammal research and monitoring in the National Marine Sanctuaries (NMS). The purpose of the workshop was to bring together researchers and sanctuary staff and to improve marine mammal research and monitoring throughout the sanctuaries. Discussion topics included: potential multi-sanctuary projects, sources of funding for multi-sanctuary projects, services and equipment for researchers through the sanctuaries, consolidating small levels of funding, help in funding and support for writing up data, publishing documents in Technical Memoranda, and letters of support. Representatives from the NMS national office and nine sanctuaries provided participants with overviews of marine mammal research within the sanctuaries. Presentations were also given by representatives from the National Marine Fisheries Service’s Permits and Health and Stranding programs. During the breakout working groups, there were several comments and suggestions consistent among each of the groups to improve marine mammal research. Each group emphasized the need to improve communication among researchers and to better share data. These suggestions included web-based information networks, advisory panels, and workshops. Regionally based research projects were also emphasized. In order to best study marine mammal populations, collaborative studies must take place throughout multiple sanctuaries. In order to achieve these large scale studies, funding and staffing must be directed towards these studies and distributed among each of the sanctuaries so that they may all be able to have the staffing, equipment, and vessels necessary to achieve a collaborative, ecosystem-based, regional marine mammal monitoring program. It will take several years to achieve all of the suggestions from the workshop, but thanks to the workshop participants, the National Marine Sanctuary Program has begun to direct marine mammal research and monitoring in order to achieve the goals of the workshop. This document provides a summary of the workshop with a focus on key points/main issues. We have included contact information intended to encourage continued collaboration among the individuals and organizations represented at the 1999 Marine Mammal Research and Monitoring in the National Marine Sanctuaries Workshop. (PDF contains 71 pages.)
Resumo:
This report reviews marine zoning in the Monterey Bay National Marine Sanctuary (MBNMS). The 72 zoned areas in the MBNMS are of 13 different zone types. Each marine zone type has associated regulations that restrict or promote specific activities. For example, recreational activities such as boating, fishing, tidepooling, snorkeling, and SCUBA diving are limited in some zones. Scientific research is allowed at all sites, with appropriate permits, and is specifically promoted in a few sites. In addition, motorized personal watercraft use, dredge material disposal, large vessel traffic, jade collection, and aircraft overflight are allowed only in specific zones. The effectiveness of the marine zoning in the MBNMS is difficult to determine for two reasons. Firstly, many of the zones lack a clearly stated purpose or have confusing regulations. Secondly, the majority of the zones have not been evaluated formally by the managing agencies. Of the zones that have been evaluated, such as Dredge Material Disposal zones, Big Creek MRPA Ecological Reserve, and Pt. Lobos State/Ecological Reserve, the majority appear to be achieving their mandated purpose to some extent. Many of the zones in the MBNMS fall under the title "marine reserve." Marine reserves have recently received significant attention internationally, nationally, and in California due to their potential for: improving the status of exploited species; protecting marine habitats and ecosystems from degradation; facilitating scientific research and fisheries management; and increasing ecotourism. However, reserves must be well designed and managed to reach this potential. A well designed and managed reserve will have clearly defined goals, scientifically-based design, proper enforcement of regulations, rigorous evaluation of the reserve's effectiveness, and adaptive management. Based on these criteria, the majority of the marine reserves in California are not well designed or managed. However, the State of California has recognized this problem and is in the process of re-evaluating the California system of marine managed areas. (PDF contains 137 pages.)
Resumo:
This study analyzed species richness, distribution, and sighting frequency of selected reef fishes to describe species assemblage composition, abundance, and spatial distribution patterns among sites and regions (Upper Keys, Middle Keys, Lower Keys, and Dry Tortugas) within the Florida Keys National Marine Sanctuary (FKNMS) barrier reef ecosystem. Data were obtained from the Reef Environmental Education Foundation (REEF) Fish Survey Project, a volunteer fish-monitoring program. A total of 4,324 visual fish surveys conducted at 112 sites throughout the FKNMS were used in these analyses. The data set contained sighting information on 341 fish species comprising 68 families. Species richness was generally highest in the Upper Keys sites (maximum was 220 species at Molasses Reef) and lowest in the Dry Tortugas sites. Encounter rates differed among regions, with the Dry Tortugas having the highest rate, potentially a result of differences in the evenness in fishes and the lower diversity of habitat types in the Dry Tortugas region. Geographic coverage maps were developed for 29 frequently observed species. Fourteen of these species showed significant regional variation in mean sighting frequency (%SF). Six species had significantly lower mean %SF and eight species had significantly higher mean %SF in the Dry Tortugas compared with other regions. Hierarchical clustering based on species composition (presence-absence) and species % SF revealed interesting patterns of similarities among sites that varied across spatial scales. Results presented here indicate that phenomena affecting reef fish composition in the FKNMS operate at multiple spatial scales, including a biogeographic scale that defines the character of the region as a whole, a reef scale (~50-100 km) that include meso-scale physical oceanographic processes and regional variation in reef structure and associated reef habitats, and a local scale that includes level of protection, cross-shelf location and a suite of physical characteristics of a given reef. It is likely that at both regional and local scales, species habitat requirements strongly influence the patterns revealed in this study, and are particularly limiting for species that are less frequently observed in the Dry Tortugas. The results of this report serve as a benchmark for the current status of the reef fishes in the FKNMS. In addition, these data provide the basis for analyses on reserve effects and the biogeographic coupling of benthic habitats and fish assemblages that are currently underway. (PDF contains 61 pages.)
Resumo:
The Flower Garden Banks are topographic features on the edge of the continental shelf in the northwest Gulf of Mexico. These banks are approximately 175 km southeast of Galveston, Texas at 28° north latitude and support the northernmost coral reefs on the North American continental shelf. The East and West Flower Garden Banks (EFG and WFG) and Stetson Bank, a smaller sandstone bank approximately 110 km offshore, are managed and protected as the Flower Garden Banks National Marine Sanctuary (FGBNMS). As part of a region-wide initiative to assess coral reef condition, the benthic and fish communities of the EFG and WFG were assessed using the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol. The AGRRA survey was conducted during a week-long cruise in August 1999 that was jointly sponsored by the FGBNMS and the Reef Environmental Education Foundation (REEF). A total of 25 coral transects, 132 algal quadrats, 24 fish transects, and 26 Roving Diver (REEF) surveys were conducted. These surveys revealed reefs with high coral cover, dominated by large, healthy corals, little macroalgae, and healthy fish populations. The percent live coral cover was 53.9 and 48.8 at the WFG and EFG, respectively, and the average colony diameter was 93 and 81 cm. Fish diversity was lower than most Caribbean reefs, but large abundances and size of many species reflected the low fishing pressure on the banks. The benthic and fish assemblages at the EFG and WFG were similar. Due to its near pristine conditions, the FGB data will prove to be a valuable component in the AGRRA database and its resulting scale of reef condition for the region. (PDF contains 22 pages.)
Resumo:
Whenever human beings have looked out on the sea, they have seen whales. First from the shore and later from ships when humanity entered the ocean realm as seafarers, we have responded to seeing these creatures with awe and wonder. Even when we hunted whales, a period well chronicled both in history and in literature, the sight of a whale brought an adrenaline rush that was not totally linked to potential economic gain. The first trips on boats specifically to watch, rather than hunt, whales began around 45 years ago in Southern California where the migrating gray whales, seen in the distance from land, drew vessels out for a closer look. Since that time whalewatching has boomed, currently conducted in over 40 countries around the world, including Antarctica, and estimated by economists at the Whale and Dolphin Conservation Society to have a 1999 worldwide economic value of around $800 million USD. The economic contribution to local coastal communities is particularly significant in developing countries and those where declining fish populations (and in some cases like the Japanese, international bans on whaling) have driven harvesters to look for viable alternatives. Clearly, whalewatching is now, in many places around the world, a small but thriving part of the regional economy. Like in the days of whaling, we still get the rush, but for some, money is back contributing to the physiological response. (PDF contains 90 pages.)
Resumo:
The National Marine Sanctuaries Act (16 U.S.C. 1431, as amended) gives the Secretary of Commerce the authority to designate discrete areas of the marine environment as National Marine Sanctuaries and provides the authority to promulgate regulations to provide for the conservation and management of these marine areas. The waters of the Outer Washington Coast were recognized for their high natural resource and human use values and placed on the National Marine Sanctuary Program Site Evaluation List in 1983. In 1988, Congress directed NOAA to designate the Olympic Coast National Marine Sanctuary (Pub. L. 100-627). The Sanctuary, designated in May 1994, worked with the U.S. Coast Guard to request the International Maritime Organization designate an Area to be Avoided (ATBA) on the Olympic Coast. The IMO defines an ATBA as "a routeing measure comprising an area within defined limits in which either navigation is particularly hazardous or it is exceptionally important to avoid casualties and which should be avoided by all ships, or certain classes of ships" (IMO, 1991). This ATBA was adopted in December 1994 by the Maritime Safety Committee of the IMO, “in order to reduce the risk of marine casualty and resulting pollution and damage to the environment of the Olympic Coast National Marine Sanctuary”, (IMO, 1994). The ATBA went into effect in June 1995 and advises operators of vessels carrying petroleum and/or hazardous materials to maintain a 25-mile buffer from the coast. Since that time, Olympic Coast National Marine Sanctuary (OCNMS) has created an education and monitoring program with the goal of ensuring the successful implementation of the ATBA. The Sanctuary enlisted the aid of the U.S. and Canadian coast guards, and the marine industry to educate mariners about the ATBA and to use existing radar data to monitor compliance. Sanctuary monitoring efforts have targeted education on tank vessels observed transiting the ATBA. OCNMS's monitoring efforts allow quantitative evaluation of this voluntary measure. Finally, the tools developed to monitor the ATBA are also used for the more general purpose of monitoring vessel traffic within the Sanctuary. While the Olympic Coast National Marine Sanctuary does not currently regulate vessel traffic, such regulations are within the scope of the Sanctuary’s Final Environmental Impact Statement/Management Plan. Sanctuary staff participate in ongoing maritime and environmental safety initiatives and continually seek opportunities to mitigate risks from marine shipping.(PDF contains 44 pages.)
Resumo:
Stranded marine mammals have long attracted public attention. Those that wash up dead are, for all their value to science, seldom seen by the public as more than curiosities. Animals that are sick, injured, orphaned or abandoned ignite a different response. Generally, public sentiment supports any effort to rescue, treat and return them to sea. Institutions displaying marine mammals showed an early interest in live-stranded animals as a source of specimens -- in 1948, Marine Studios in St. Augustine, Florida, rescued a young short-finned pilot whale (Globicephala macrorhynchus), the first ever in captivity (Kritzler 1952). Eventually, the public as well as government agencies looked to these institutions for their recognized expertise in marine mammal care and medicine. More recently, facilities have been established for the sole purpose of rehabilitating marine mammals and preparing them for return to the wild. Four such institutions are the Marine Mammal Center (Sausalito, CA), the Research Institute for Nature Management (Pieterburen, The Netherlands), the RSPCA, Norfolk Wildlife Hospital (Norfolk, United Kingdom) and the Institute for Wildlife Biology of Christian-Albrects University (Kiel, Germany).(PDF contains 68 pages.)
Resumo:
The Tortugas South Ecological Reserve, located along the margin of the southwest Florida carbonate platform, is part of the largest no-take marine reserve in the U.S. Established in July 2001, the reserve is approximately 206 km2 in area, and ranges in depths from 30 m at Riley’s Hump to over 600 m at the southern edge of the reserve. Geological and biological information for the Tortugas South Reserve is lacking, and critical for management of the area. Bathymetric surveys were conducted with a Simrad EM 3000 multibeam echosounder at Riley’s Hump and Miller’s Ledge, located in the northern and central part of the reserve. Resulting data were used to produce basemaps to obtain geological ground truth and visual surveys of biological communities, including reef fishes. Visual surveys were conducted using SCUBA and the Phantom S2 Remotely Operated Vehicle (ROV) at Riley’s Hump. Visual surveys were conducted using the ROV and the Deepworker 2000 research submersible along Miller’s Ledge, within and outside of the reserve. A total of 108 fishes were recorded during SCUBA, ROV, and submersible observations. Replicate survey transects resulted in over 50 fishes documented at Miller’s Ledge, and eight of the top ten most abundant species were planktivores. Many species of groupers, including scamp (Mycteroperca phenax), red grouper (Epinephelus morio), snowy grouper (E. niveatus), speckled hind (E. drummondhayi), and Warsaw grouper (E. nigritus), are present in the sanctuary. Numerous aggregations of scamp and a bicolor phase of the Warsaw grouper were observed, indicating the importance of Miller’s Ledge as a potential spawning location for both commercially important and rare deep reef species, and as a potential source of larval recruits for the Florida Keys and other deep reef ecosystems of Florida
Resumo:
Marine Fishery Reserves (MFRs) are being adopted, in part, as a strategy to replenish depleted fish stocks and serve as a source for recruits to adjacent fisheries. By necessity, their design must consider the biological parameters of the species under consideration to ensure that the spawning stock is conserved while simultaneously providing propagules for dispersal. We describe how acoustic telemetry can be employed to design effective MFRs by elucidating important life-history parameters of the species under consideration, including home range, and ecological preferences, including habitat utilization. We then designed a reserve based on these parameters using data from two acoustic telemetry studies that examined two closely-linked subpopulations of queen conch (Strombus gigas) at Conch Reef in the Florida Keys. The union of the home ranges of the individual conch (aggregation home range: AgHR) within each subpopulation was used to construct a shape delineating the area within which a conch would be located with a high probability. Together with habitat utilization information acquired during both the spawning and non-spawning seasons, as well as landscape features (i.e., corridors), we designed a 66.5 ha MFR to conserve the conch population. Consideration was also given for further expansion of the population into suitable habitats.