264 resultados para Southern Brazilian shelf
Resumo:
Measurements of 18O/16O and 13C/12C ratios in the carbonate of juvenile gray snapper (Lutjanus griseus) sagittal otoliths collected during 2001–2005 from different southern Florida regions indicated significant variations in the ratios between Florida Bay and surrounding areas. Annual differences in isotopic composition were also observed. Classification accuracy of individual otoliths to a region averaged 80% (63% to 96%), thereby enabling the probability of assigning an unknown individual to the appropriate juvenile nursery habitat. Identification of isotopic signatures in the otoliths of gray snapper from Florida Bay and adjacent ecosystems may be important for distinguishing specific portions of the bay that are crucial nursery grounds for juveniles. Separation of gray snapper between geographic regions and nursery sites is possible and has the potential to establish a link between adult gray snapper present on offshore reefs and larvae and juveniles at nursery habitats in Florida Bay or adjacent areas.
Resumo:
Skates (family Rajidae) are oviparous and lay tough, thick-walled eggs. At least some skate species lay their eggs in spatially restricted nursery grounds where embryos develop and hatch (Hitz, 1964; Hoff, 2007). After hatching, neonates may quickly leave the nursery grounds (Hoff, 2007). Egg densities in these small areas may be quite high. As an example, in the eastern Bering Sea, a site <2 km2 harbored eggs of Alaska skate (Bathyraja parmifera) exceeding 500,000/km2. All skate nursery grounds have been identified over soft sea floors (Lucifora and García, 2004; Hoff, 2007).
Resumo:
The widespread and commercially important rougheye rockfish, Sebastes aleutianus (Jordan and Evermann, 1898), has been considered a single variable species, with light- and dark-colored forms, found on the outer continental shelf and upper slope of the North Pacific Ocean. Genetic analysis of 124 specimens verified the presence of two species in new specimens collected from Alaska to Oregon, and the two species were analyzed for distinguishing color patterns and morphological characters. Characters distinguishing the two were extended to an analysis of 215 additional formalin-fixed specimens representing their geographic ranges. Sebastes aleutianus is pale, often has dark mottling on the dorsum in diffuse bands, and does not have distinct dark spots on the spinous dorsal fin; it ranges from the eastern Aleutian Islands and southeastern Bering Sea to California. Sebastes melanostictus (Matsubara, 1934), the blackspotted rockfish, ranges from central Japan, through the Aleutian Islands and Bering Sea, to southern California. It is darker overall and spotting is nearly always present on the spinous dorsal fin. Sebastes swifti (Evermann and Goldsborough, 1907) is a synonym of S. aleutianus; S. kawaradae (Matsubara, 1934) is a synonym of S. melanostictus. The subgenus Zalopyr is restricted to S. aleutianus and S. melanostictus. Nomenclatural synonymies, diagnoses, descriptions, and distributions are provided for each species.
Resumo:
To determine if shoreface sand ridges provide unique habitats for fish on the inner continental shelf, two cross-shelf trawl surveys (23 km in length) were conducted in southern New Jersey (July and September 1991−95 with a beam trawl and July and September 1997−06 with an otter trawl) to assess whether species abundance, richness, and assemblages differed on and away from the ridge. The dominant species collected with both gears were from the families Paralichthyidae, Triglidae, Gobiidae, Serranidae, Engraulidae, Stromateidae, and Sciaenidae. Overall abundance (n=41,451 individuals) and species richness (n=61 species) were distributed bimodally across the nearshore to offshore transect, and the highest values were found on either side of the sand ridge regardless of gear type. Canonical correspondence analysis revealed three species assemblages: inshore (<5 meters depth), near-ridge (9−14 meters depth), and offshore (>14 meters depth), and variation in species composition between gear types. Environmental factors that corresponded with the assemblage changes included depth, temperature, distance from the top of the ridge, and habitat complexity. The most abundant near-ridge assemblages were distinct and included economically important species. Sand ridges of the inner continental shelf appear to be important habitat for a number of fish species and therefore may not be a suitable area for sand and gravel mining.
Resumo:
We determined the dis-tribution of multiple (n=68; 508−978 mm total length [TL]) striped bass (Morone saxatilis) along the estua-rine salinity gradient in the Mullica River−Great Bay in southern New Jersey over two years to determine the diversity of habitat use and the movements of striped bass. Ultrasoni-cally tagged fish were detected in this estuarine area by means of wireless hydrophones deployed at four gates inside the entrance of the study area and farther up to tidal freshwater (38 km). Numerous individuals frequently departed and returned to the estuary, primarily in the spring and late fall over periods of 15−731 days at liberty. The period of residency and degree of movement of individuals to and from the estuary varied extensively among seasons and years. The diversity of movements in and out of, as well as within, the estuary differed from the less-complex patterns reported in earlier studies, perhaps because of the comprehensive and synoptic nature of this study.
Resumo:
Cannibalism is thought to be an inf luential top-down process affecting walleye pollock (Theragra chalcogramma) recruitment in the eastern Bering Sea (EBS). In summer, many age-1 pollock occupy the same depths as those of adult walleye pollock, making them vulnerable to cannibalism. We examine factors that inf luence the occurrence and amount of cannibalism, as well as the abundance and co-occurrence of predator and prey walleye pollock. Large walleye pollock were generally found in deeper waters and avoided cold temperatures; whereas, age-1 walleye pollock were found in broader bottom depth and temperature ranges. The occurrence of cannibalism was highest in the area where predator and prey walleye pollock co-occurred and the amount of cannibalism was highest on the middle and outer EBS shelf. Both the occurrence and amount of cannibalism were influenced by location, bottom temperature and bottom depth, and the abundance of prey walleye pollock. The abundance of both large and small walleye pollock decreased during the 1982–2006 survey period in the EBS and, hence, the occurrence and amount of cannibalism also decreased. The occurrence and amount of cannibalism observed in the diet samples from the summer survey were good indicators of year class strength, as estimated by the stock assessment model. There was more cannibalism of age-1 walleye pollock when predicted recruit abundance was highest, indicating that summer cannibalism on age-1 walleye pollock, a top-down process, does not control walleye pollock recruitment in the EBS.
Resumo:
Rockfish (Sebastes spp.) juveniles are often difficult to identify by using morphological characters. This study independently applies morphological characters and a key based on mitochondrial restriction site variation to identify juvenile rockf ishes collected in southern California during juvenile rockfish surveys. Twenty-four specimens of Sebastes were examined genetically without knowledge of the morphological assignment. Seventeen fish were identified genetically as S. semicinctus, S. goodei, S. auriculatus, S. jordani, S. levis, S. rastrelliger, and S. saxicola. Identities for the remaining fish were narrowed to two or three species: 1) three fish were either S. carnatus or S. chrysomelas; 2) one fish was either S. chlorosticus, S. eos, or S. rosenblatti; and 3) three fish could have been either S. hopkinsi or S. ovalis, the latter for which we now have distinguishing mitochondrial markers. The genetic and morphological assignments concurred except for the identity of one fish that could only be narrowed down to S. hopkinsi or S. semicinctus by using morphological characters. Genetics excluded more species from multispecies groupings than did the morphological approach, especially species within the subgenus Sebastomus. Species in the genetically unresolvable groups may be similar because of recent divergence or because of interspecies introgression.
Resumo:
Fishery catch data on yellowfin tuna (Thunnus albacares) were examined to study the effects of El Niño events between 1990 and 1999 for an area in the northeastern tropical Pacific (18−24°N, 112−104°W). The data were extracted from a database of logbook records from the Mexican tuna purse-seine f leet. Latitudinal distribution of the catches increased from south to north for the 10-year period. Highest catches and effort were concentrated between 22°N and 23°N. This area accumulated 48% of the total catch over the 10year period. It was strongly correlated with El Niño-Southern Oscillation (ENSO) events. At least two periods of exceptionally high catches occurred following El Niño events in 1991 and 1997. Peaks of catches were triggered by the arrival of positive anomalies of sea surface temperature (SST) to the area. A delay of two to four months was observed between the occurrence of maximum SST anomalies at the equator and peaks of catch. Prior to these two events, negative SST anomalies were the dominant feature in the study area and catch was extremely low. This trend of negative SST anomalies with low catches followed by positive SST anomalies and high catches may be attributed to northward yellowfin tuna migration patterns driven by El Niño forcing, a result that contrasts with the known behavior of decreasing relative abundance of these tuna after El Niño events in the eastern Pacific. However, this decrease in relative abundance may be the result of a local or subregional effect.
Resumo:
A new species of the cottid genus Triglops Reinhardt is described on the basis of 21 specimens collected in Aniva Bay, southern Sakhalin Island, Russia, and off Kitami, on the northern coast of Hokkaido, Japan, at depths of 73–117 m. Of the ten species of Triglops now recognized, the new species, Triglops dorothy, is most similar to T. pingeli Reinhardt, well known from the North Atlantic and North Pacific oceans and throughout coastal waters of the Arctic. The new species differs from T. pingeli in a combination of morphometric and meristic characters that includes most importantly the number of dorsolateral scales; the number of oblique, scaled dermal folds below the lateral line; and the number of gill rakers.
Resumo:
The morphometric and morphological characters of the rostrum have been widely used to identify penaeid shrimp species (Heales et al., 1985; Dall et al., 1990; Pendrey et al., 1999). In this setting, one of the constraints in studies of penaeid shrimp populations has been the uncertainty in the identification of early life history stages, especially in coastal nursery habitats, where recruits and juveniles dominate the population (Dall et al., 1990; Pérez-Castañeda and Defeo, 2001). In the western Atlantic Ocean, Pérez-Farfante (1969, 1970, 1971a) described diagnostic characters of the genus Farfantepenaeus that allowed identification of individuals in the range of 8−20 mm CL (carapace length) on the basis of the following morphological features: 1) changes in the structure of the petasma and thelycum; 2) absence or presence of distomarginal spines in the ventral costa of the petasma; 3) the ratio between the keel height and the sulcus width of the sixth abdominal somite; 4) the shape and position of the rostrum with respect to the segments and flagellum of the antennule; and 5) the ratio between rostrum length (RL) and carapace length (RL/CL). In addition, she classified Farfantepenaeus into two groups according to the shape and position of the rostrum with respect to the segments and flagellum of the antennule and the ratio RL/CL: 1) F. duorarum and F. notialis: short rostrum, straight distally, and the proximodorsal margin convex, usually extending anteriorly to the end of distal antennular segment, sometimes reaching to proximal one-fourth of broadened portion of lateral antennular flagellum, with RL/CL <0.75; and 2) F. aztecus, F. brasiliensis, F. paulensis, and F. subtilis: long rostrum, usually almost straight along the entire length, extending anteriorly beyond the distal antennular segment, sometimes reaching to the distal one-third of broadened portion of lateral antennular flagellum, with RL/CL >0.80. Pérez-Farfante stressed that, for the recognition to species level of juveniles <10 mm CL, all the characters listed above should be considered because occasionally one alone may not prove to be diagnostic. However, the only characters that could be distinguished for small juveniles in the range 4−8 mm CL are those defined on the rostrum. Therefore, it has been almost impossible to identify and separate small specimens of Farfantepenaeus (Pérez-Farfante, 1970, 1971a; Pérez-Farfante and Kensley, 1997).
Resumo:
The variability in the supply of pink shrimp (Farfantepenaeus duorarum) postlarvae and the transport mechanisms of planktonic stages were investigated with field data and simulations of transport. Postlarvae entering the nursery grounds of Florida Bay were collected for three consecutive years at channels that connect the Bay with the Gulf of Mexico, and in channels of the Middle Florida Keys that connect the southeastern margin of the Bay with the Atlantic Ocean. The influx of postlarvae in the Middle Florida Keys was low in magnitude and varied seasonally and among years. In contrast, the greater postlarval influx occurred at the northwestern border of the Bay, where there was a strong seasonal pattern with peaks in influx from July through September each year. Planktonic stages need to travel up to 150 km eastward between spawning grounds (northeast of Dry Tortugas) and nursery grounds (western Florida Bay) in about 30 days, the estimated time of planktonic development for this species. A Lagrangian trajectory model was developed to estimate the drift of planktonic stages across the SW Florida shelf. The model simulated the maximal distance traveled by planktonic stages under various assumptions of behavior. Simulation results indicated that larvae traveling with the instantaneous current and exhibiting a diel behavior travel up to 65 km and 75% of the larvae travel only 30 km. However, the eastward distance traveled increased substantially when a larval response to tides was added to the behavioral variable (distance increased to 200 km and 85% of larvae traveled 150 km). The question is, when during larval development, and where on the shallow SW Florida shelf, does the tidal response become incorporated into the behavior of pink shrimp.
Resumo:
The population biology and status of the painted sweeplips (Diagramma pictum) and spangled emperor (Lethrinus nebulosus) in the southern Arabian Gulf were established by using a combination of size-frequency, biological, and size-at-age data. Transverse sections of sagittal otoliths were characterized by alternating translucent and opaque bands that were validated as annuli. Comparisons of growth characteristics showed that there were no significant differences (P>0.05) between sexes. There were well defined peaks in the reproductive cycle, spawning occurred from April to May for both species, and the mean size at which females attained sexual maturity was 31.8 cm fork length (LF) for D. pictum and 27.6 cm (LF) for L. nebulosus. The mean sizes at first capture (21.1 cm LF for D. pictum and 26.4 cm LF for L. nebulosus) were smaller than the sizes for both at first sexual maturity and those at which yield per recruit would be maximized. The range of fishing-induced mortality rates for D. pictum (0.37−0.62/yr) was substantially greater than the target (Fopt=0.07/yr) and limit (Flimit=0.09/ yr) estimates. The range of fishing-induced mortality rates for L. nebulosus (0.15/yr to 0.57/yr) was also in excess of biological reference points (Fopt=0.10/yr and Flimit=0.13/yr). In addition to growth overfishing, the stocks were considered to be recruitment overfished because the biomass per recruit was less than 20% of the unexploited levels for both species. The results of the study are important to fisheries management authorities in the region because they indicate that both a reduction in fishing effort and mesh-size regulations are required for the demersal trap fishery.
Resumo:
Many modern stock assessment methods provide the machinery for determining the status of a stock in relation to certain reference points and for estimating how quickly a stock can be rebuilt. However, these methods typically require catch data, which are not always available. We introduce a model-based framework for estimating reference points, stock status, and recovery times in situations where catch data and other measures of absolute abundance are unavailable. The specif ic estimator developed is essentially an age-structured production model recast in terms relative to pre-exploitation levels. A Bayesian estimation scheme is adopted to allow the incorporation of pertinent auxiliary information such as might be obtained from meta-analyses of similar stocks or anecdotal observations. The approach is applied to the population of goliath grouper (Epinephelus itajara) off southern Florida, for which there are three indices of relative abundance but no reliable catch data. The results confirm anecdotal accounts of a marked decline in abundance during the 1980s followed by a substantial increase after the harvest of goliath grouper was banned in 1990. The ban appears to have reduced fishing pressure to between 10% and 50% of the levels observed during the 1980s. Nevertheless, the predicted fishing mortality rate under the ban appears to remain substantial, perhaps owing to illegal harvest and depth-related release mortality. As a result, the base model predicts that there is less than a 40% chance that the spawning biomass will recover to a level that would produce a 50% spawning potential ratio.
Resumo:
Age-based analyses were used to demonstrate consistent differences in growth between populations of Acanthochromis polyacanthus (Pomacentridae) collected at three distance strata across the continental shelf (inner, mid-, and outer shelf) of the central Great Barrier Reef (three reefs per distance stratum). Fish had significantly greater maximum lengths with increasing distance from shore, but fish from all distances reached approximately the same maximum age, indicating that growth is more rapid for fish found on outer-shelf reefs. Only one fish collected from inner-shelf reefs reached >100 mm SL, whereas 38−67% of fish collected from the outer shelf were >100 mm SL. The largest age class of adult-size fish collected from inner and mid-shelf locations comprised 3−4 year-olds, but shifted to 2-year-olds on outer-shelf reefs. Mortality schedules (Z and S) were similar irrespective of shelf position (inner shelf: 0.51 and 60.0%; mid-shelf: 0.48 and 61.8%; outer shelf: 0.43 and 65.1%, respectively). Age validation of captive fish indicated that growth increments are deposited annually, between the end of winter and early spring. The observed cross-shelf patterns in adult sizes and growth were unlikely to be a result of genetic differences between sample populations because all fish collected showed the same color pattern. It is likely that cross-shelf variation in quality and quantity of food, as well as in turbidity, are factors that contribute to the observed patterns of growth. Similar patterns of cross-shelf mortality indicate that predation rates varied little across the shelf. Our study cautions against pooling demographic parameters on broad spatial scales without consideration of the potential for cross-shelf variabil
Resumo:
Data from ichthyoplankton surveys conducted in 1972 and from 1977 to 1999 (no data were collected in 1980) by the Alaska Fisheries Science Center (NOAA, NMFS) in the western Gulf of Alaska were used to examine the timing of spawning, geographic distribution and abundance, and the vertical distribution of eggs and larvae of flathead sole (Hippoglossoides elassodon). In the western Gulf of Alaska, flathead sole spawning began in early April and peaked from early to mid-May on the continental shelf. It progressed in a southwesterly direction along the Alaska Peninsula where three main areas of flathead sole spawning were indentified: near the Kenai Peninsula, in Shelikof Strait, and between the Shumagin Islands and Unimak Island. Flathead sole eggs are pelagic, and their depth distribution may be a function of their developmental stage. Data from MOCNESS tows indicated that eggs sink near time of hatching and the larvae rise to the surface to feed. The geographic distribution of larvae followed a pattern similar to the distribution of eggs, only it shifted about one month later. Larval abundance peaked from early to mid-June in the southern portion of Shelikof Strait. Biological and environmental factors may help to retain flathead sole larvae on the continental shelf near their juvenile nursery areas.