220 resultados para North Carolina Sea Grant


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two common goals of this meeting are to arrest the effects of sea level rise and other phenomena caused by Greenhouse Gases from anthropogenic sources ("GHG",) and to mitigate the effects. The fundamental questions are: (1) how to get there and (2) who should shoulder the cost? Given Washington gridlock, states, NGO's and citizens such as the Inupiat of the Village of Kivalina have turned to the courts for solutions. Current actions for public nuisance seek (1) to reduce and eventually eliminate GHG emissions, (2) damages for health effects and property damage—plus hundreds of millions in dollars spent to prepare for the foregoing. The U.S. Court of Appeals just upheld the action against the generators of some 10% of the CO2 emissions from human activities in the U.S., clearing the way for a trial featuring the state of the art scientific linkage between GHG production and the effects of global warming. Climate change impacts on coastal regions manifest most prominently through sea level rise and its impacts: beach erosion, loss of private and public structures, relocation costs, loss of use and accompanying revenues (e.g. tourism), beach replenishment and armoring costs, impacts of flooding during high water events, and loss of tax base. Other effects may include enhanced storm frequency and intensity, increased insurance risks and costs, impacts to water supplies, fires and biological changes through invasions or local extinctions (IPCC AR4, 2007; Okmyung, et al., 2007). There is an increasing urgency for federal and state governments to focus on the local and regional levels and consistently provide the information, tools, and methods necessary for adaptation. Calls for action at all levels acknowledge that a viable response must engage federal, state and local expertise, perspectives, and resources in a coordinated and collaborative effort. A workshop held in December 2000 on coastal inundation and sea level rise proposes a shared framework that can help guide where investments should be made to enable states and local governments to assess impacts and initiate adaptation strategies over the next decade. (PDF contains 5 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How is climate change affecting our coastal environment? How can coastal communities adapt to sea level rise and increased storm risk? These questions have garnered tremendous interest from scientists and policy makers alike, as the dynamic coastal environment is particularly vulnerable to the impacts of climate change. Over half the world population lives and works in a coastal zone less than 120 miles wide, thereby being continuously affected by the changes in the coastal environment [6]. Housing markets are directly influenced by the physical processes that govern coastal systems. Beach towns like Oak Island in North Carolina (NC) face severe erosion, and the tax assesed value of one coastal property fell by 93% in 2007 [9]. With almost ninety percent of the sandy beaches in the US facing moderate to severe erosion [8], coastal communities often intervene to stabilize the shoreline and hold back the sea in order to protect coastal property and infrastructure. Beach nourishment, which is the process of rebuilding a beach by periodically replacing an eroding section of the beach with sand dredged from another location, is a policy for erosion control in many parts of the US Atlantic and Pacific coasts [3]. Beach nourishment projects in the United States are primarily federally funded and implemented by the Army Corps of Engineers (ACE) after a benefit-cost analysis. Benefits from beach nourishment include reduction in storm damage and recreational benefits from a wider beach. Costs would include the expected cost of construction, present value of periodic maintenance, and any external cost such as the environmental cost associated with a nourishment project (NOAA). Federal appropriations for nourishment totaled $787 million from 1995 to 2002 [10]. Human interventions to stabilize shorelines and physical coastal dynamics are strongly coupled. The value of the beach, in the form of storm protection and recreation amenities, is at least partly capitalized into property values. These beach values ultimately influence the benefit-cost analysis in support of shoreline stabilization policy, which, in turn, affects the shoreline dynamics. This paper explores the policy implications of this circularity. With a better understanding of the physical-economic feedbacks, policy makers can more effectively design climate change adaptation strategies. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal hazards such as flooding and erosion threaten many coastal communities and ecosystems. With documented increases in both storm frequency and intensity and projected acceleration of sea level rise, incorporating the impacts of climate change and variability into coastal vulnerability assessments is becoming a necessary, yet challenging task. We are developing an integrated approach to probabilistically incorporate the impacts of climate change into coastal vulnerability assessments via a multi-scale, multi-hazard methodology. By examining the combined hazards of episodic flooding/inundation and storm induced coastal change with chronic trends under a range of future climate change scenarios, a quantitative framework can be established to promote more sciencebased decision making in the coastal zone. Our focus here is on an initial application of our method in southern Oregon, United States. (PDF contains 5 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding fluctuations in tropical cyclone activity along United States shores and abroad becomes increasingly important as coastal managers and planners seek to save lives, mitigate damage, and plan for resilience in the face of changing storminess and sea-level rise. Tropical cyclone activity has long been of concern to coastal areas as they bring strong winds, heavy rains, and high seas. Given projections of a warming climate, current estimates suggest that not only will tropical cyclones increase in frequency, but also in intensity (maximum sustained winds and minimum central pressures). An understanding of what has happened historically is an important step in identifying potential future changes in tropical cyclone frequency and intensity. The ability to detect such changes depends on a consistent and reliable global tropical cyclone dataset. Until recently no central repository for historical tropical cyclone data existed. To fill this need, the International Best Track Archive for Climate Stewardship (IBTrACS) dataset was developed to collect all known global historical tropical cyclone data into a single source for dissemination. With this dataset, a global examination of changes in tropical cyclone frequency and intensity can be performed. Caveats apply to any historical tropical cyclone analysis however, as the data contributed to the IBTrACS archive from various tropical cyclone warning centers is still replete with biases that may stem from operational changes, inhomogeneous monitoring programs, and time discontinuities. A detailed discussion of the difficulties in detecting trends using tropical cyclone data can be found in Landsea et al. 2006. The following sections use the IBTrACS dataset to show the global spatial variability of tropical cyclone frequency and intensity. Analyses will show where the strongest storms typically occur, the regions with the highest number of tropical cyclones per decade, and the locations of highest average maximum wind speeds. (PDF contains 3 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal communities throughout the United States have dealt with the devastating effects of storms for centuries, however today’s threats are greater due to three factors. First, the population along the coastline has grown, and is projected to increase.i Additionally, past land use management decisions in the coastal zone have rarely led to the greatest protection from threats. Finally, climate change is predicted to affect coastal areas by accelerating current sea level rise rates and possibly increasing storm intensity.ii These factors compounded together mean that coastal communities are facing a very dangerous situation that threatens economies and human life. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tourism driven development and coastal gentrification have resulted in a notable decline in traditional coastaldependent businesses on the South Carolina (SC) coast. We examined the sustainability of these businesses by assessing tourists’ demand for local, traditional, and marine related products and services. The research integrated focus groups and an intercept-based mail survey. This paper reports selected survey results and discusses how the findings will be incorporated into small-business training materials. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unremitting waves and occasional storms bring dynamic forces to bear on the coast. Sediment flux results in various patterns of erosion and accretion, with an overwhelming majority (80 to 90 percent) of coastline in the eastern U.S. exhibiting net erosion in recent decades. Climate change threatens to increase the intensity of storms and raise sea level 18 to 59 centimeters over the next century. Following a lengthy tradition of economic models for natural resource management, this paper provides a dynamic optimization model for managing coastal erosion and explores the types of data necessary to employ the model for normative policy analysis. The model conceptualizes benefits of beach and dune sediments as service flows accruing to nearby residential property owners, local businesses, recreational beach users, and perhaps others. Benefits can also include improvements in habitat for beach- and dune-dependent plant and animal species. The costs of maintaining beach sediment in the presence of coastal erosion include expenditures on dredging, pumping, and placing sand on the beach to maintain width and height. Other costs can include negative impacts on the nearshore environment. Employing these constructs, an optimal control model is specified that provides a framework for identifying the conditions under which beach replenishment enhances economic welfare and an optimal schedule for replenishment can be derived under a constant sea level and erosion rate (short term) as well as an increasing sea level and erosion rate (long term). Under some simplifying assumptions, the conceptual framework can examine the time horizon of management responses under sea level rise, identifying the timing of shift to passive management (shoreline retreat) and exploring factors that influence this potential shift. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years coastal resource management has begun to stand as its own discipline. Its multidisciplinary nature gives it access to theory situated in each of the diverse fields which it may encompass, yet management practices often revert to the primary field of the manager. There is a lack of a common set of “coastal” theory from which managers can draw. Seven resource-related issues with which coastal area managers must contend include: coastal habitat conservation, traditional maritime communities and economies, strong development and use pressures, adaptation to sea level rise and climate change, landscape sustainability and resilience, coastal hazards, and emerging energy technologies. The complexity and range of human and environmental interactions at the coast suggest a strong need for a common body of coastal management theory which managers would do well to understand generally. Planning theory, which itself is a synthesis of concepts from multiple fields, contains ideas generally valuable to coastal management. Planning theory can not only provide an example of how to develop a multi- or transdisciplinary set of theory, but may also provide actual theoretical foundation for a coastal theory. In particular we discuss five concepts in the planning theory discourse and present their utility for coastal resource managers. These include “wicked” problems, ecological planning, the epistemology of knowledge communities, the role of the planner/ manager, and collaborative planning. While these theories are known and familiar to some professionals working at the coast, we argue that there is a need for broader understanding amongst the various specialists working in the increasingly identifiable field of coastal resource management. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite an increasing literary focus on climate change adaptation, the facilitation of this adaptation is occurring on a limited basis (Adger et al. 2007) .This limited basis is not necessarily due to inability; rather, a lack of comprehensive cost estimates of all options specifically hinders adaptation in vulnerable communities (Adger et al. 2007). Specifically the estimated cost of the climate change impact of sea-level rise is continually increasing due to both increasing rates and the resulting multiplicative impact of coastal erosion (Karl et al., 2009, Zhang et al., 2004) Based on the 2007 Intergovernmental Panel on Climate Change report, minority groups and small island nations have been identified within these vulnerable communities. Therefore the development of adaptation policies requires the engagement of these communities. State examples of sea-level rise adaptation through land use planning mechanisms such as land acquisition programs (New Jersey) and the establishment of rolling easements (Texas) are evidence that although obscured, adaptation opportunities are being acted upon (Easterling et al., 2004, Adger et al.2007). (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to providing vital ecological services, coastal areas of North Carolina provide prized areas for habitation, recreation, and commercial fisheries. However, from a management perspective, the coasts of North Carolina are highly variable and complex. In-water constituents such as nutrients, suspended sediments, and chlorophyll a concentration can vary significantly over a broad spectrum of time and space scales. Rapid growth and land-use change continue to exert pressure on coastal lands. Coastal environments are also very vulnerable to short-term (e.g., hurricanes) and long-term (e.g., sea-level rise) natural changes that can result in significant loss of life, economic loss, or changes in coastal ecosystem functioning. Hence, the dynamic nature, effects of human-induced change over time, and vulnerability of coastal areas make it difficult to effectively monitor and manage these important state and national resources using traditional data collection technologies such as discrete monitoring stations and field surveys. In general, these approaches provide only a sparse network of data over limited time and space scales and generally are expensive and labor-intensive. Products derived from spectral images obtained by remote sensing instruments provide a unique vantage point from which to examine the dynamic nature of coastal environments. A primary advantage of remote sensing is that the altitude of observation provides a large-scale synoptic view relative to traditional field measurements. Equally important, the use of remote sensing for a broad range of research and environmental applications is now common due to major advances in data availability, data transfer, and computer technologies. To facilitate the widespread use of remote sensing products in North Carolina, the UNC Coastal Studies Institute (UNC-CSI) is developing the capability to acquire, process, and analyze remotely sensed data from several remote sensing instruments. In particular, UNC-CSI is developing regional remote sensing algorithms to examine the mobilization, transport, transformation, and fate of materials between coupled terrestrial and coastal ocean systems. To illustrate this work, we present the basic principles of remote sensing of coastal waters in the context of deriving information that supports efficient and effective management of coastal resources. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rainbow smelt (Osmerus mordax) are small anadromous fish that live in nearshore coastal waters during much of the year and migrate to tidal rivers to spawn during the spring. They are a key prey species in marine food webs, as they are consumed by larger organisms such as striped bass, bluefish, and seabirds. In addition, smelt are valued culturally and economically, as they support important recreational and commercial fisheries. The Atlantic Coast range of rainbow smelt has been contracting in recent decades. Historically, populations extended from the Delaware River to eastern Labrador and the Gulf of St. Lawrence (Buckley 1989). More recent observations indicate that rainbow smelt spawning populations have been extirpated south of Long Island Sound, and evidence of spawning activity is extremely limited between Long Island and Cape Cod, MA. In the Gulf of Maine region, spawning runs are still observed, but monitoring surveys as well as commercial and recreational catches indicate that these populations have also declined (e.g., Chase and Childs 2001). Many diverse factors could drive the recently noted declines in rainbow smelt populations, including spawning habitat conditions, fish health, marine environmental conditions, and fishing pressure. Few studies have assessed any of these potential threats or their joint implications. In 2004, the National Marine Fisheries Service (NMFS) listed rainbow smelt as a species of concern. Subsequently, the states of Maine, New Hampshire, and Massachusetts were awarded a grant through NMFS’s Proactive Conservation Program to gather new information on the status of rainbow smelt, identify factors that affect spawning populations, and develop a multi-state conservation program. This paper provides an overview of this collaborative project, highlighting key biological monitoring and threats assessment research that is being conducted throughout the Gulf of Maine. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generally, wetlands are thought to perform water purification functions, removing contaminants as water flows through sediment and vegetation. This paradigm was challenged when Grant et al. (2001) reported that Talbert Salt Marsh (Figure 1.) increased fecal indicator bacteria (FIB) output to coastal waters, contributing to poor coastal water quality. Like most southern California wetlands, Talbert Salt Marsh has been severely degraded. It is a small (10 ha), restored wetland, only 1/100th its original size, and located at the base of a highly urbanized watershed. Is it reasonable to expect that this or any severely altered wetland will perform the same water purification benefits as a natural wetland? To determine how a more pristine southern California coastal wetland attenuated bacterial contaminants, we investigated FIB concentrations entering and exiting Carpinteria Salt Marsh (Figure 2.), a 93 ha, moderate-sized, relatively natural wetland.(PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an unequivocal scientific consensus that increases in greenhouse gases in the atmosphere drive warming temperatures of air and sea, and acidification of the world’s oceans from carbon dioxide absorbed by the oceans. These changes in turn can induce shifts in precipitation patterns, sea level rise, and more frequent and severe extreme weather events (e.g. storms and sea surge). All of these impacts are already being witnessed in the world’s coastal regions and are projected to intensify in years to come. Taken together, these impacts are likely to result in significant alteration of natural habitats and coastal ecosystems, and increased coastal hazards in low-lying areas. They can affect fishers, coastal communities and resource users, recreation and tourism, and coastal infrastructure. Approaches to planned adaptation to these impacts can be drawn from the lessons and good practices from global experience in Integrated Coastal Management (ICM). The recently published USAID Guidebook on Adapting to Coastal Climate Change (USAID 2009) is directed at practitioners, development planners, and coastal management professionals in developing countries. It offers approaches for assessing vulnerability to climate change and climate variability in communities and outlines how to develop and implement adaptation measures at the local and national levels. Six best practices for coastal adaptation are featured in the USAID Guidebook on Adapting to Coastal Climate Change and summarized in the following sections. (PDF contains 3 pages)