129 resultados para NATURAL MORTALITY-RATES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Contemporary striped bass population modeling efforts on coastal stocks point to a reduced population fecundity in Chesapeake Bay being partially responsible for declining reproduction (Anonymous 1985; Boreman and Goodyear 1984). Fecundity values used in these models were based on earlier work by jackson and tiller (1952), lewis and Bonner (1966), Hollis (1967) and Holland and Yelverton (1973). An important feature to the Boreman and Goodyear (1985) model (FSIM) is an accurate determination of the fecundity weight regression equation used to determine the rate of egg deposition over time. Egg deposition models in turn can be used to determine how reproductive potential is changing over time in response to various management actions, i.e. reducing fishing mortality rates. thus it is imperative to follow population stock structure in the Bay system and to develop a contemporary fecundity relationship for striped bass. This report deals with the gonadal material collected in 1986 and 1987 from a coordinated Maryland field program. Samples were obtained from drift gill net collections during the spawning season from four localities: Potomac Estuary, Upper Bay, Chesapeake and Delaware Canal, and the Choptank Estuary (Figure 1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

English: We describe an age-structured statistical catch-at-length analysis (A-SCALA) based on the MULTIFAN-CL model of Fournier et al. (1998). The analysis is applied independently to both the yellowfin and the bigeye tuna populations of the eastern Pacific Ocean (EPO). We model the populations from 1975 to 1999, based on quarterly time steps. Only a single stock for each species is assumed for each analysis, but multiple fisheries that are spatially separate are modeled to allow for spatial differences in catchability and selectivity. The analysis allows for error in the effort-fishing mortality relationship, temporal trends in catchability, temporal variation in recruitment, relationships between the environment and recruitment and between the environment and catchability, and differences in selectivity and catchability among fisheries. The model is fit to total catch data and proportional catch-at-length data conditioned on effort. The A-SCALA method is a statistical approach, and therefore recognizes that the data collected from the fishery do not perfectly represent the population. Also, there is uncertainty in our knowledge about the dynamics of the system and uncertainty about how the observed data relate to the real population. The use of likelihood functions allow us to model the uncertainty in the data collected from the population, and the inclusion of estimable process error allows us to model the uncertainties in the dynamics of the system. The statistical approach allows for the calculation of confidence intervals and the testing of hypotheses. We use a Bayesian version of the maximum likelihood framework that includes distributional constraints on temporal variation in recruitment, the effort-fishing mortality relationship, and catchability. Curvature penalties for selectivity parameters and penalties on extreme fishing mortality rates are also included in the objective function. The mode of the joint posterior distribution is used as an estimate of the model parameters. Confidence intervals are calculated using the normal approximation method. It should be noted that the estimation method includes constraints and priors and therefore the confidence intervals are different from traditionally calculated confidence intervals. Management reference points are calculated, and forward projections are carried out to provide advice for making management decisions for the yellowfin and bigeye populations. Spanish: Describimos un análisis estadístico de captura a talla estructurado por edad, A-SCALA (del inglés age-structured statistical catch-at-length analysis), basado en el modelo MULTIFAN- CL de Fournier et al. (1998). Se aplica el análisis independientemente a las poblaciones de atunes aleta amarilla y patudo del Océano Pacífico oriental (OPO). Modelamos las poblaciones de 1975 a 1999, en pasos trimestrales. Se supone solamente una sola población para cada especie para cada análisis, pero se modelan pesquerías múltiples espacialmente separadas para tomar en cuenta diferencias espaciales en la capturabilidad y selectividad. El análisis toma en cuenta error en la relación esfuerzo-mortalidad por pesca, tendencias temporales en la capturabilidad, variación temporal en el reclutamiento, relaciones entre el medio ambiente y el reclutamiento y entre el medio ambiente y la capturabilidad, y diferencias en selectividad y capturabilidad entre pesquerías. Se ajusta el modelo a datos de captura total y a datos de captura a talla proporcional condicionados sobre esfuerzo. El método A-SCALA es un enfoque estadístico, y reconoce por lo tanto que los datos obtenidos de la pesca no representan la población perfectamente. Además, hay incertidumbre en nuestros conocimientos de la dinámica del sistema e incertidumbre sobre la relación entre los datos observados y la población real. El uso de funciones de verosimilitud nos permite modelar la incertidumbre en los datos obtenidos de la población, y la inclusión de un error de proceso estimable nos permite modelar las incertidumbres en la dinámica del sistema. El enfoque estadístico permite calcular intervalos de confianza y comprobar hipótesis. Usamos una versión bayesiana del marco de verosimilitud máxima que incluye constreñimientos distribucionales sobre la variación temporal en el reclutamiento, la relación esfuerzo-mortalidad por pesca, y la capturabilidad. Se incluyen también en la función objetivo penalidades por curvatura para los parámetros de selectividad y penalidades por tasas extremas de mortalidad por pesca. Se usa la moda de la distribución posterior conjunta como estimación de los parámetros del modelo. Se calculan los intervalos de confianza usando el método de aproximación normal. Cabe destacar que el método de estimación incluye constreñimientos y distribuciones previas y por lo tanto los intervalos de confianza son diferentes de los intervalos de confianza calculados de forma tradicional. Se calculan puntos de referencia para el ordenamiento, y se realizan proyecciones a futuro para asesorar la toma de decisiones para el ordenamiento de las poblaciones de aleta amarilla y patudo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

English: Recent calls for a more holistic approach to fisheries management have motivated development of trophic mass-balance models of ecosystems that underlie fisheries production. We developed a model hypothesis of the pelagic ecosystem in the eastern tropical Pacific Ocean (ETP) to gain insight into the relationships among the various species in the system and to explore the ecological implications of alternative methods of harvesting tunas. We represented the biomasses of and fluxes between the principal elements in the ecosystem with Ecopath, and examined the ecosystem's dynamic, time-series behavior with Ecosim. We parameterized the model for 38 species or groups of species, and described the sources, justifications, assumptions, and revisions of our estimates of the various parameters, diet relations, fisheries landings, and fisheries discards in the model. We conducted sensitivity analyses with an intermediate version of the model, for both the Ecopath mass-balance and the dynamic trajectories predicted by Ecosim. The analysis showed that changes in the basic parameters for two components at middle trophic levels, Cephalopods and Auxis spp., exert the greatest influence on the system. When the Cephalopod Q/B and Auxis spp. P/B were altered from their initial values and the model was rebalanced, the trends of the biomass trajectories predicted by Ecosim were not sensitive, but the scaling was sensitive for several components. We described the review process the model was subjected to, which included reviews by the IATTC Purse-seine Bycatch Working Group and by a working group supported by the National Center for Ecological Analysis and Synthesis. We fitted the model to historical time series of catches per unit of effort and mortality rates for yellowfin and bigeye tunas in simulations that incorporated historical fishing effort and a climate driver to represent the effect of El Niño-Southern Oscillation-scale variation on the system. The model was designed to evaluate the possible ecological implications of fishing for tunas in various ways. We recognize that a model cannot possibly represent all the complexity of a pelagic ocean ecosystem, but we believe that the ETP model provides insight into the structure and function of the pelagic ETP. Spanish: Llamamientos recientes hacia un enfoque más holístico al ordenamiento de la pesca han motivado el desarrollo de modelos tróficos de balance de masas de los ecosistemas que sostienen la producción pesquera. Desarrollamos una hipótesis modelo del ecosistema pelágico en el Océano Pacífico oriental tropical (POT) con miras a mejorar los conocimientos de las relaciones entre las distintas especies en el sistema y explorar las implicaciones ecológicas de métodos alternativos de capturar atunes. Con Ecopath representamos las biomasas de los elementos principales en el ecosistema, y los flujos entre los mismos, y con Ecosim examinamos el comportamiento dinámico del ecosistema con el tiempo. Parametrizamos el modelo para 38 especies o grupos de especies (denominados “componentes” del modelo), y describimos las fuentes, justificaciones, supuestos, y revisiones de nuestras estimaciones de los distintos parámetros, relaciones basadas en dieta, capturas retenidas de las pesquerías, y descartes de las mismas en el modelo. Realizamos análisis de sensibilidad con una versión intermedia del modelo, para el balance de masas de Ecopath y las trayectorias dinámicas predichas por Ecosim también. El análisis demostró que cambios en los parámetros básicos para dos componentes en niveles tróficos medianos, Cefalópodos y Auxis spp., ejercieron la mayor influencia sobre el sistema. Cuando se alteraron el Q/B de los Cefalópodos y el P/B de los Auxis spp. de sus valores iniciales y se balanceó el modelo de nuevo, las tendencias de las trayectorias de la biomasa predichas por Ecosim no fueron sensibles, pero la escala fue sensible para varios componentes. Describimos el proceso de revisión al que fue sujeto el modelo, inclusive revisiones por el Grupo de Trabajo sobre Captura Incidental de la CIAT y un grupo de trabajo apoyado por el Centro Nacional para Síntesis y Análisis Ecológicos. Ajustamos el modelo a series de tiempo históricas de capturas por unidad de esfuerzo y tasas de mortalidad de atunes aleta amarilla y patudo en simulaciones que incorporaron esfuerzo de pesca histórico e impulsos climáticos para representar el efecto de variaciones a escala de El Niño-Oscilación del Sur sobre el sistema. El modelo fue diseñado para evaluar las posibles implicaciones ecológicas de la pesca atunera de varias formas. Reconocemos la imposibilidad de que el modelo represente toda la complejidad de un ecosistema oceánico pelágico, pero creemos que el modelo del POT mejora los conocimientos de la estructura y función del POT pelágico.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Petersen disc tag marking experiments confirm the influence of animal size and marking time on the recapture rate. Westward migrations occur, probably following the Ivorian undercurrent. Catchability coefficients have been evaluated for the Grand-Bassam fishing ground and tentatively extrapolated to the other fishing areas. The extrapolated non weighted coefficient for the entire fishing areas is q=0.00069/fishing day for an area of 390 miles. The instantaneous coefficient of residual mortality X taken as a first and possibly slightly overestimated value of M the natural mortality, has been estimated at 0.155/month, strongly corroborating Berry's results (1967). This value is however much smaller than that given by earlier authors. It is suggested that q could have a higher value during the very first weeks of exploitation at sea, when the juveniles are concentrated near the lagoon outlets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The eel, Anguilla anguilla (L.), stock of the river Elbe severely decreased during the last decades. Detailed knowledge of the stock dynamics in freshwater and especially of the impact factors is necessary to take effective measures for stock conservation and improvement. The dynamics of the eel stock are modelled based on immigration, stocking, natural mortality and mortalities caused by fishing, angling, cormorants and hydropower plants. The model estimates the number of emigrating eel. Moreover, it enables to study the sensitivity of the estimates related to the uncertainty of the source data of the different influencing factors. The model may be used to develop management strategies and to assess the effi ciency of different management options. Zusammenfassung Der Aalbestand im Elbesystem ist in den letzten Jahrzehnten stark zur

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ichthyoplankton surveys have been used to provide an independent estimate of adult spawning biomass of commercially exploited species and to further our understanding of the recruitment processes in the early life stages. However, predicting recruitment has been difficult because of the complex interaction of physical and biological processes operating at different spatial and temporal scales that can occur at the different life stages. A model of first-year life-stage recruitment was applied to Georges Bank Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) stocks over the years 1977–2004 by using environmental and densitydependent relationships. The best lifestage mortality relationships for eggs, larvae, pelagic juveniles, and demersal juveniles were first determined by hindcasting recruitment estimates based on egg and larval abundance and mortality rates derived from two intensive sampling periods, 1977–87 and 1995–99. A wind-driven egg mortality relationship was used to estimate losses due to transport off the bank, and a wind-stress larval mortality relationship was derived from feeding and survival studies. A simple metric for the density-dependent effects of Atlantic cod was used for both Atlantic cod and haddock. These life stage proxies were then applied to the virtual population analysis (VPA) derived annual egg abundances to predict age-1 recruitment. Best models were determined from the correlation of predicted and VPA-derived age-1 abundance. The larval stage was the most quantifiable of any stage from surveys, whereas abundance estimates of the demersal juvenile stage were not available because of undersampling. Attempts to forecast recruitment from spawning stock biomass or egg abundance, however, will always be poor because of variable egg survival.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Red bream (Beryx decadactylus) is a commercially important deep-sea benthopelagic fish with a circumglobal distribution on insular and continental slopes and seamounts. In the United States, small numbers are caught incidentally in the wreckfish (Polyprion americanus) fishery which operates off the southeastern coast, but no biological information exists for the management of the U.S. red bream population. For this study, otoliths (n=163) and gonads (n=161) were collected from commercially caught red bream between 2003 and 2008 to determine life history parameters. Specimens ranged in size from 410 to 630 mm fork length and were all determined to be mature by histological examination of the gonads. Females in spawning condition were observed from June through September, and reproductively active males were found year-round. Sectioned otoliths were difficult to interpret, but maximum age estimates were much higher than the 15 years previously reported for this species from the eastern North Atlantic based on whole-otolith analysis. Estimated ages ranged from 8 to 69 years, and a minimum lifespan of 49 years was validated by using bomb radiocarbon dating. Natural mortality was estimated at 0.06/yr. This study shows that red bream are longer lived and more vulnerable to overfishing than previously assumed and should be managed carefully to prevent overexploitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Demographic parameters from seven exploited coral reef lutjanid species were compared as a case study of the implications of intrafamily variation in life histories for multispecies harvest management. Modal lengths varied by 4 cm among four species (Lutjanus fulviflamma, L. vitta, L. carponotatus, L. adetii), which were at least 6 cm smaller than the modal lengths of the largest species (L. gibbus, Symphorus nematophorus, Aprion virescens). Modal ages, indicating ages of full selection to fishing gear, were 10 years or less for all species, but maximum ages ranged from 12 (L. gibbus) to 36 years (S. nematophorus). Each species had a unique growth pattern, with differences in length-at-age and mean asymptotic fork length (L∞), but smaller species generally grew fast during the first 1–2 years of life and larger species grew more slowly over a longer period. Total mortality rates varied among species; L. gibbus had the highest mortality and L. fulviflamma, the lowest mortality. The variability in life history strategies of these tropical lutjanids makes generalizations about lutjanid life histories difficult, but the fact that all seven had characteristics that would make them particularly vulnerable to fishing indicates that harvest of tropical lutjanids should be managed with caution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract—In the first of two companion papers, a 54-yr time series for the oyster population in the New Jersey waters of Delaware Bay was analyzed to develop biological relationships necessary to evaluate maximum sustainable yield (MSY) reference points and to consider how multiple stable points affect reference point-based management. The time series encompassed two regime shifts, one circa 1970 that ushered in a 15-yr period of high abundance, and a second in 1985 that ushered in a 20-yr period of low abundance. The intervening and succeeding periods have the attributes of alternate stable states. The biological relationships between abundance, recruitment, and mortality were unusual in four ways. First, the broodstock–recruitment relationship at low abundance may have been driven more by the provision of settlement sites for larvae by the adults than by fecundity. Second, the natural mortality rate was temporally unstable and bore a nonlinear relationship to abundance. Third, combined high abundance and low mortality, though likely requiring favorable environmental conditions, seemed also to be a self-reinforcing phenomenon. As a consequence, the abundance –mortality relationship exhibited both compensatory and depensatory components. Fourth, the geographic distribution of the stock was intertwined with abundance and mortality, such that interrelationships were functions both of spatial organization and inherent populatio

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the second of two companion articles, a 54-year time series for the oyster population in the New Jersey waters of Delaware Bay is analyzed to examine how the presence of multiple stable states affects reference-point–based management. Multiple stable states are described by four types of reference points. Type I is the carrying capacity for the stable state: each has associated with it a type-II reference point wherein surplus production reaches a local maximum. Type-II reference points are separated by an intermediate surplus production low (type III). Two stable states establish a type-IV reference point, a point-of-no-return that impedes recovery to the higher stable state. The type-II to type-III differential in surplus production is a measure of the difficulty of rebuilding the population and the sensitivity of the population to collapse at high abundance. Surplus production projections show that the abundances defining the four types of reference points are relatively stable over a wide range of uncertainties in recruitment and mortality rates. The surplus production values associated with type-II and type-III reference points are much more uncertain. Thus, biomass goals are more easily established than fishing mortality rates for oyster population

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantification of predator-prey body size relationships is essential to understanding trophic dynamics in marine ecosystems. Prey lengths recovered from predator stomachs help determine the sizes of prey most influential in supporting predator growth and to ascertain size-specific effects of natural mortality on prey populations (Bax, 1998; Claessen et al., 2002). Estimating prey size from stomach content analyses is often hindered because of the degradation of tissue and bone by digestion. Furthermore, reconstruction of original prey size from digested remains requires species-specific reference materials and techniques. A number of diagnostic guides for freshwater (Hansel et al., 1988) and marine (Watt et al., 1997; Granadeiro and Silva, 2000) prey species exist; however they are limited to specific geographic regions (Smale et al., 1995; Gosztonyi et al., 2007). Predictive equations for reconstructing original prey size from diagnostic bones in marine fishes have been developed in several studies of piscivorous fishes of the Northwest Atlantic Ocean (Scharf et al., 1998; Wood, 2005). Conversely, morphometric relationships for cephalopods in this region are scarce despite their importance to a wide range of predators, such as finfish (Bowman et al., 2000 ; Staudinger, 2006), elasmobranchs (Kohler, 1987), and marine mammals (Gannon et al., 1997; Williams, 1999).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Priors are existing information or beliefs that are needed in Bayesian analysis. Informative priors are important in obtaining the Bayesian posterior distributions for estimated parameters in stock assessment. In the case of the steepness parameter (h), the need for an informative prior is particularly important because it determines the stock-recruitment relationships in the model. However, specifications of the priors for the h parameter are often subjective. We used a simple population model to derive h priors based on life history considerations. The model was based on the evolutionary principle that persistence of any species, given its life history (i.e., natural mortality rate) and its exposure to recruitment variability, requires a minimum recruitment compensation that enables the species to rebound consistently from low critical abundances (Nc). Using the model, we derived the prior probability distributions of the h parameter for fish species that have a range of natural mortality, recruitment variabilities, and Nt values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The population biology and status of the painted sweeplips (Diagramma pictum) and spangled emperor (Lethrinus nebulosus) in the southern Arabian Gulf were established by using a combination of size-frequency, biological, and size-at-age data. Transverse sections of sagittal otoliths were characterized by alternating translucent and opaque bands that were validated as annuli. Comparisons of growth characteristics showed that there were no significant differences (P>0.05) between sexes. There were well defined peaks in the reproductive cycle, spawning occurred from April to May for both species, and the mean size at which females attained sexual maturity was 31.8 cm fork length (LF) for D. pictum and 27.6 cm (LF) for L. nebulosus. The mean sizes at first capture (21.1 cm LF for D. pictum and 26.4 cm LF for L. nebulosus) were smaller than the sizes for both at first sexual maturity and those at which yield per recruit would be maximized. The range of fishing-induced mortality rates for D. pictum (0.37−0.62/yr) was substantially greater than the target (Fopt=0.07/yr) and limit (Flimit=0.09/ yr) estimates. The range of fishing-induced mortality rates for L. nebulosus (0.15/yr to 0.57/yr) was also in excess of biological reference points (Fopt=0.10/yr and Flimit=0.13/yr). In addition to growth overfishing, the stocks were considered to be recruitment overfished because the biomass per recruit was less than 20% of the unexploited levels for both species. The results of the study are important to fisheries management authorities in the region because they indicate that both a reduction in fishing effort and mesh-size regulations are required for the demersal trap fishery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Estimates of the growth (K), natural mortality (M), consumption/biomass (Q/B) rate and trophic level (TL) for 35 species in the upper Paraná river floodplain and the Itaipu reservoir (interconnected ecosystems) are presented. A compilation of these biological statistics is made for comparison purposes and some general trends are briefly discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study summarizes previously published and updated empirical relations for the estimation of production/biomass ratios in benthic invertebrates; of natural mortality in benthic invertebrates and finfish; and of respiration from production and vice versa in animal populations. AMS-EXCEL spreadsheet containing these equations is available from the author via Email. They are also included in the Ecopath with Ecosim software.