85 resultados para Mexican diaspora
Resumo:
The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England and Long Island, N.Y., made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has given consumers a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Tabasco leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certified beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.
Resumo:
The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has provided consumers with a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Campeche leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certifi ed beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.
Resumo:
The exploitation of California sea lions, Zalophus californianus, in Mexican waters can be divided into four periods as defined by political characteristics of the country: Prehispanic, Colonial, Independent, and Postrevolutionary. During the first period (pre 1533), Native Americans took sea lions at low levels. During the second (1534–1821) and the third (1822–1911) periods, most exploitation was by foreigners and was incidental to other marine mammal harvests. During the Postrevolutionary period (after 1911), sea lions were exploited by Mexican and U.S. citizens for several commercial uses. Exploitation officially ended in 1982, although some small-scale poaching still occurs.
Resumo:
Simulations based on a yield-per-recruit model were performed to analyze the impact ofg rowth overfishing on brown shrimp, Penaeus aztecus, and to assess the effects of a closed season inshore and offshore of the Mexican States of Tamaulipas and Veracruz. Closure of both the inshore and offshore fisheries could enhance cohort yield by more than 300%. Cohon yield enhancement would be only about 60-80% if only the offshore season were closed. The closed season of 1993 gave better results as it covered a larger part of the brown shrimp peak recruitment period. Catch per unit of effort (CPUE) after closure in 1993, compared with 1994, was 2.4 times higher than the mean CPUE of the month. Total annual offshore yield increased 72% in 1993 (3,800 metric tons (t)) and 10% in 1994 (506 t) with respect to the mean annual offshore catch during the 10-year period prior to the 1993 closure. Simulation results could help identify alternatives that permit the coexistence of the inshore and offshore fisheries while maintaining high profitability of the brown shrimp fishery.
Resumo:
Latin America has been shown to be susceptible to climatic anomalies during El Niño/Southern Oscillation (ENSO) events (eg, Aceituno 1988; Ropelewshi and Halpert 1987; Kiladis and Diaz 1989). While these studies have emphasized ENSO-related rainfall and temperature anomalies over Central and South America, less work has been done on the climatic effects of ENSO over the Mexican region. In this study we are investigating interannual and intraseasonal fluctuation in temperature and precipitation over the southwestern United States and Mexico since the turn of the century. We are particularly interested in the effects of ENSO on the interannual variability over this region. This report focuses on the association between ENSO and interannual variability of precipitation over Mexico.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The latest in a series of unusual winters affected the western United States during 1991-92. This report is primarily concerned with the 6 to 8 coolest months, with some consideration of the adjacent summer months. ... Much of the winter was characterized by "split flow" west of North America. As it approached the West Coast, the jet stream frequently diverged into a northern branch toward Panhandle Alaska and a second southern branch that dived south along the California coast and then eastward along the US-Mexican border. Repeatedly, storms approaching the West Coast were stretched north-to-south, losing their organization in the process.
Resumo:
In August 2011, the NOAA National Ocean Service (NOS) conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters of the continental shelf in the northwestern Gulf of Mexico (GOM). The original sampling design included 50 randomly selected sites from the Mississippi River delta to the U.S./Mexican border, representing a total area of 111,162 square kilometers; however, vessel failures and inclement weather precluded sampling at 16 sites in the western-most part of the study region. Sampling was completed at the remaining 34 sites in offshore waters between the Mississippi River delta and Freeport, Texas, representing an estimated 75,591 square kilometers. Field sampling followed standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna, fish tissue contaminant levels). Water depths ranged from 13 – 83 m throughout the study area. About 9 % of the area had sediments composed of sands (< 20 % silt+clay), 47 % of the area was composed of intermediate muddy sands (20 – 80 % silt+clay), and 44 % of the sampled area consisted of mud (> 80 % silt+clay). About 50 % of the area (represented by 17 sites) had sediment total organic carbon (TOC) concentrations < 5 mg/g and all of the sites sampled had levels of TOC < 20 mg/g, well below the range associated with potentially harmful effects to benthic fauna (> 50 mg/g). Surface salinities ranged from 23.4 – 36.5 psu, with salinity generally increasing with distance west of the Mississippi River delta. Bottom salinities varied between 31.1 and 36.5 psu, with lowest values occurring at shallow, inner-shelf stations. Surface-water temperatures varied between 29.8 and 31.5 ºC, while near-bottom waters ranged in temperature from 19.4 – 31 ºC. An index of density stratification (Δσt) indicated that portions of coastal shelf waters in the northwestern GOM at the time of this sampling were strongly stratified. Values of Δσt at 19 of the 34 sites sampled in this study (56 % of the study area) ranged from 2.2 to 12.4, which is within the range considered to be indicative of strong vertical stratification (Δσt > 2). Stratification was strongest close to the Mississippi River delta, and decreased with distance west of the delta.
Resumo:
This cruise report is a summary of a field survey conducted along a portion of the U.S. continental shelf in northwestern Gulf of Mexico (GOM), at navigable depths along the coastline seaward to the shelf break (~100m) from about 89°30' W to 95°28' W longitude, August 8 – 16, 2011 on NOAA Ship Nancy Foster Cruise NF-11-07-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 34 stations throughout these waters using a random probabilistic sampling design. The original study design consisted of 50 stations extending from the Mississippi delta all the way to the U.S./Mexican border, but vessel failures precluded sampling at 16 stations within the western-most portion of the study area. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. Other indicators, from a human-dimension perspective, were also recorded, including presence of vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing, some preliminary results and observations are reported here. A final report will be completed once all data have been processed.
Resumo:
An analysis was made of sexual pattern, spawning season, sizes at sexual maturation, and sex change in black grouper (Mycteroperca bonaci) from the southern Gulf of Mexico. Samples were taken between 1996 and 2000, from industrial and small-craft commercial fi sheries, in offshore and inshore waters of the continental shelf of the Yucatan Peninsula (Campeche Bank), including the shallow waters of National Marine Park Alacranes Reef. For all collected specimens (n=1229), sex and maturation condition were determined by histological analysis of the gonads. The offshore sample consisted of 75.1% females, 24.3% males, and 0.6% transitional-stage fish. All individuals collected from inshore waters were females. Gonadal structure and population structure characteristics for Campeche Bank black grouper were consistent with the characteristics of monandric protogynous hermaphrodism for a serranid fish. Sexually active males and females were observed year-round, although ripening females, with stage-III, -IV, and -V vitellogenic oocytes in the ovaries, dominated in samples taken between December and March. In addition, peak occurrence of ripe-running females with hyaline oocytes or postovulatory follicles (or both) in the ovaries was recorded in January and February. A few precocious females began spawning in October and November, and others were still in spawning condition in May and June. Fifty percent maturity of females was attained at 72.1 cm fork length (FL). Median size at sexual inversion was 103.3 cm FL, and 50% of the females measuring 111.4 cm FL had transformed into males. The southern Gulf of Mexico grouper fishery was considered deteriorated and lacked a well-defined management strategy. Results of the present study provide helpful information on black grouper reproduction in this area and could help Mexican authorities choose appropriate management strategies for this fishery, such as minimum size limit, closed fishing season, and protection of spawning aggregations.
Resumo:
Mayan cichlids (Cichlasoma urophthalmus) were collected monthly from March 1996 to October 1997 with hook-and-line gear at Taylor River, Florida, an area within the Crocodile Sanctuary of Everglades National Park, where human activities such as fishing are prohibited. Fish were aged by examining thin-sectioned otoliths, and past size-at-age information was generated by using back-calculation techniques. Marginal increment analysis showed that opaque growth zones were annuli deposited between January and May. The size of age-1 fish was estimated to be 33–66 mm standard length (mean=45.5 mm) and was supported by monthly length-frequency data of young-of-year fish collected with drop traps over a seven-year period. Mayan cichlids up to seven years old were observed. Male cichlids grew slower but achieved a larger size than females. Growth was asymptotic and was modeled by the von Bertalanffy growth equation Lt=263.6(1–exp[–0.166(t–0.001)]) for males (r2=0.82, n=581) and Lt=215.6 (1–exp[–0.197(t–0.058)]) for females (r2= 0.77, n=639). Separate estimates of total annual mortality were relatively consistent (0.44–0.60) and indicated moderate mortality at higher age classes, even in the absence of fishing mortality. Our data indicated that Mayan cichlids grow slower and live longer in Florida than previously reported from native Mexican habitats. Because the growth of Mayan cichlids in Florida periodically slowed and thus produced visible annuli, it may be possible to age introduced populations of other subtropical and tropical cichlids in a similar way.