83 resultados para Lutjanus argentimaculatus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In addition to providing an overview of the party boat fishery in the U.S. Gulf of Mexico, a management-oriented methodology is presented that can be used elsewhere to assess regulatory impacts. Party boat operators were interviewed to determine species targeted, percent time committed to targeting each species, and opinions on current catch restrictions. Over two-thirds of the fieet was located on the west coast of Florida. Overall, most boats targeted <5 species. Four species accounted for 90 percent of the estimated effort by party boats in the U.S. Gulf of Mexico: Snapper; Lutjanus sp.; grouper, Epinephelus sp. and Mycteroperca sp.; amberjack, Seriola dumerili; and king mackerel, Scomberomorus cavalla. Party boat effort in Texas was devoted primarily to snapper, whereas in Florida most effort was devoted to snapper and grouper collectively. Party boat operators were diverse in their opinions of management regulations in force when interviewed. Results revealed why major opposition would he expected from Texas party boat operators for red snapper bag limits and other restrictions proposed by the Gulf of Mexico Fishery Management Council.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The charter boat industry in U. S. Gulf of Mexico provides access to offshore fishing opportunities for about 570,000 passengers per year on 971 boats. A 25% random sample of charter boat operators was interviewed during 1987-88 to determine species targeted, percent time committed to targeting each species, and reactions to existing catch restrictions. Three-fourths of the charter boat fleet was in Florida, 13% in Texas, 5% in Louisiana, 4% in Alabama, and 2% in Mississippi. Responses were diverse regarding species focus within the region. Species of dominant importance included groupers, Epinephelus sp. and Mycteroperca sp. (Fla.); snapper, Lutjanus campechanus (Ala., Fla., Miss., and La.); king mackerel, Scomberomorus cavalla (Miss., Tex., Ala. and Fla.); spotted seatrout, Cynoscion nebulosus (Tex. and La.); and red drum, Sciaenops ocellatus (Tex. and La). Catch restrictions were generally supported with higher levels of opposition to restricted high effort fish and/or one fish or closed fishery limits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NOAA’s National Centers for Coastal Ocean Science (NCCOS)-Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch, National Park Service (NPS), US Geological Survey, and the University of Hawaii used acoustic telemetry to quantify spatial patterns and habitat affinities of reef fishes around the island of St. John, US Virgin Islands. The objective of the study was to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef National Monument (VICRNM), the Virgin Islands National Park (VIIS), and Territorial waters surrounding St. John. In order to better understand species’ habitat utilization patterns among management regimes, we deployed an array of hydroacoustic receivers and acoustically tagged reef fishes. Thirty six receivers were deployed in shallow near-shore bays and across the shelf to depths of approximately 30 m. One hundred eighty four individual fishes were tagged representing 19 species from 10 different families with VEMCO V9-2L-R64K transmitters. The array provides fish movement information at fine (e.g., day-night and 100s meters within a bay) to broad spatial and temporal scales (multiple years and 1000s meters across the shelf). The long term multi-year tracking project provides direct evidence of connectivity across habitat types in the seascape and among management units. An important finding for management was that a number of individuals moved among management units (VICRNM, VINP, Territorial waters) and several snapper moved from near-shore protected areas to offshore shelf-edge spawning aggregations. However, most individuals spent the majority of their time with VIIS and VICRNM, with only a few wide-ranging species moving outside the management units. Five species of snappers (Lutjanidae) accounted for 31% of all individuals tagged, followed by three species of grunts (Haemulidae) accounting for an additional 23% of the total. No other family had more than a single species represented in the study. Bluestripe grunt (Haemulon sciurus) comprised 22% of all individuals tagged, followed by lane snappers (Lutjanus synagris) at 21%, bar jack (Carangoides ruber) at 11%, and saucereye porgy (Calamus calamus) at 10%. The largest individual tagged was a 70 cm TL nurse shark (Ginglymostoma cirratum), followed by a 65 cm mutton snapper (Lutjanus analis), a 47 cm bar jack, and a 41 cm dog snapper (Lutjanus jocu). The smallest individuals tagged were a 19 cm blue tang (Acanthurus coeruleus) and a 19.2 cm doctorfish (Acanthurus chirurgus). Of the 40 bluestriped grunt acoustically tagged, 73% were detected on the receiver array. The average days at large (DAL) was 249 (just over 8 months), with one individual detected for 930 days (over two and a half years). Lane snapper were the next most abundant species tagged (N = 38) with 89% detected on the array. The average days at large (DAL) was 221 with one individual detected for 351 days. Seventy-one percent of the bar jacks (N = 21) were detected on the array with the average DALs at 47 days. All of the mutton snapper (N = 12) were detected on the array with an average DAL of 273 and the longest at 784. The average maximum distance travelled (MDT) was ca. 2 km with large variations among species. Grunts, snappers, jacks, and porgies showed the greatest movements. Among all individuals across species, there was a positive and significant correlation between size of individuals and MDT and between DAL and MDT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many common fishes associated with Caribbean coral reef ecosystems use resources from more than 1 patch type during routine daily foraging activities. Few studies have provided direct evidence of connectivity across seascapes, and the importance of benthic seascape structure on movement behavior is poorly known. To address this knowledge gap, we coupled hydro-acoustic technology to track fish with seafloor mapping and pattern analysis techniques from landscape ecology to quantify seascape structure. Bluestriped grunts Haemulon sciurus and schoolmaster snapper Lutjanus apodus were tracked over 24 h periods using boat-based acoustic telemetry. Movement pathways, and day and night activity spaces were mapped using geographical information system (GIS) tools, and seafloor structure within activity spaces was mapped from high-resolution aerial photography and quantified using spatial pattern metrics. For both fish species, night activity spaces were significantly larger than day activity spaces. Fish exhibited a daytime preference for seascapes with aggregate coral reef and colonized bedrock, then shifted to night activity spaces with lower complexity soft sediment including sand, seagrass, and scattered coral/rock. Movement path complexity was negatively correlated with seascape complexity. This demonstrates direct connectivity across multiple patch types and represents the first study to apply quantitative landscape ecology techniques to examine the movement ecology of marine fish. The spatially explicit approach facilitates understanding to the linkages between biological processes and the heterogeneity of the landscape. Such studies are essential for identifying ecologically relevant spatial scales, delineating essential fish habitat and designing marine protected areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonindigenous species (NIS) are a major threat to marine ecosystems, with possible dramatic effects on biodiversity, biological productivity, habitat structure and fisheries. The Papahānaumokuākea Marine National Monument (PMNM) has taken active steps to mitigate the threats of NIS in Northwestern Hawaiian Islands (NWHI). Of particular concern are the 13 NIS already detected in NWHI and two invasive species found among the main Hawaiian Islands, snowflake coral (Carijoa riseii) and a red alga (Hypnea musciformis). Much of the information regarding NIS in NWHI has been collected or informed by surveys using conventional SCUBA or fishing gear. These technologies have significant drawbacks. SCUBA is generally constrained to depths shallower than 40 m and several NIS of concern have been detected well below this limit (e.g., L. kasmira – 256 m) and fishing gear is highly selective. Consequently, not all habitats or species can be properly represented. Effective management of NIS requires knowledge of their spatial distribution and abundance over their entire range. Surveys which provide this requisite information can be expensive, especially in the marine environment and even more so in deepwater. Technologies which minimize costs, increase the probability of detection and are capable of satisfying multiple objectives simultaneously are desired. This report examines survey technologies, with a focus on towed camera systems (TCSs), and modeling techniques which can increase NIS detection and sampling efficiency in deepwater habitats of NWHI; thus filling a critical data gap in present datasets. A pilot study conducted in 2008 at French Frigate Shoals and Brooks Banks was used to investigate the application of TCSs for surveying NIS in habitats deeper than 40 m. Cost and data quality were assessed. Over 100 hours of video was collected, in which 124 sightings of NIS were made among benthic habitats from 20 to 250 m. Most sightings were of a single cosmopolitan species, Lutjanus kasmira, but Cephalopholis argus, and Lutjanus fulvus, were also detected. The data expand the spatial distributions of observed NIS into deepwater habitats, identify algal plain as an important habitat and complement existing data collected using SCUBA and fishing gear. The technology’s principal drawback was its inability to identify organisms of particular concern, such as Carijoa riseii and Hypnea musciformis due to inadequate camera resolution and inability to thoroughly inspect sites. To solve this issue we recommend incorporating high-resolution cameras into TCSs, or using alternative technologies, such as technical SCUBA diving or remotely operated vehicles, in place of TCSs. We compared several different survey technologies by cost and their ability to detect NIS and these results are summarized in Table 3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sectioned otoliths of four fish species from a tropical demersal trawl fishery in Western Australia revealed a series of alternating trans-lucent and opaque zones in reflected light. The translucent zones, referred to as growth rings, were counted to determine fish ages. The width of the opaque zone on the periphery of the otolith section as a proportion of the width of the previous opaque zone (index of completion) was used to determine the periodicity of growth-ring formation. This article describes a method for modeling changes in the index of ring completion over time, from which a parameter for the most probable time of growth-ring formation (with confidence intervals) can be determined. The parameter estimate for the timing of new growth-ring formation for Lethrinus sp. 3 was from mid July to mid September, for Lutjanus vitta from early July to the end of August, for Nemipterus furcosus from mid July to late September, and for Lutjanus sebae from mid July to mid November. The confidence intervals for the timing of formation of growth rings was variable between species, being smallest for L. vitta, and variable between fish of the same species with different numbers of growth rings. The stock assessments of these commercially important species relies on aging information for all the age classes used in the assessment. This study demonstrated that growth rings on sectioned otoliths were laid down annually, irrespective of the number of growth rings, and also demonstrated that the timing of ring formation for these tropical species can be determined quantitatively (with confidence intervals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minced fish prepared from the fillets of the sciaenid fish (Lutjanus sp.) was washed with cold water (<10 °C) three times. The washed muscle was pressed through a piece of fine cloth to a moisture content around 80%. The pressed cake (Surimi) was ground with 2.5% sodium chloride and 3% tapioca starch. The mixed material was shaped in the form of a cake and left for one hour for the gel to set. The cakes were then steamed. The cooled cakes were cut into pieces of 1 cm length x 1 cm width x 0.5 cm thick. The pieces were either dried in an electrical oven at 50°C or dried in sun to a moisture content of 11-12%. Biochemical, bacteriological and organoleptic evaluation revealed that the cakes were in very good acceptable form for 8 months. The cakes could be rehydrated by soaking in water at ambient temperature for half an hour and boiling in water for 10 minutes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphological studies on fish blood have been undertaken by many authors. The species used for the present study are: Arius thalassimus, Diploprion bifasciatum, Epinephelus maculatus, Lutjanus chrysotaenia, Lutjanus sanguineus, Scolopsis dubiosus, Plectorhynchus lineatus, Pomacanthus semicirculatus, Platax orbicularis, Amphiprion polylepis, Pseudoscarus nuchipunctatus, Seriola nigrofasciata, Pseudorhombus neglectus, Cynoglossus bilineatus, Acanthurus strigosus, Balistes stellatus.