164 resultados para Harvest festivals
Resumo:
The term “selectivity” refers to the relationship between the size (or age) of a fish and its vulnerability to a given kind of fishing gear. A selectivity schedule, along with other parameters, is normally estimated in the course of fitting a stock assessment model, and the estimated schedule can have a large effect on both the estimate of present stock abundance and the choice of an appropriate harvest rate. The form of the relationship is usually not known and not well determined by the data, and equally good model fits can often be obtained with different plausible specifications of selectivity. Choosing among the model fits and associated abundance estimates in this situation is problematic (Sigler, 1999; Sullivan et al., 19
Resumo:
Horseshoe crab (Limulus polyphemus) is harvested commercially, used by the biomedical industry, and provides food for migrating shorebirds, particularly in Delaware Bay. Recently, decreasing crab population trends in this region have raised concerns that the stock may be insufficient to fulfill the needs of these diverse user groups. To assess the Delaware Bay horseshoe crab population, we used surplus production models (programmed in ASPIC), which incorporated data from fishery-independent surveys, fishery-dependent catch-per-unit-of-effort data, and regional harvest. Results showed a depleted population (B2003/=0.03−0.71) BMSY and high relative fishing mortality /FMSY=0.9−9.5). Future harvest (F2002strategies for a 15-year period were evaluated by using population projections with ASPICP software. Under 2003 harvest levels (1356 t), population recovery to BMSY would take at least four years, and four of the seven models predicted that the population would not reach BMSY within the 15year period. Production models for horseshoe crab assessment provided management benchmarks for a species with limited data and no prior stock assessment
Resumo:
Many modern stock assessment methods provide the machinery for determining the status of a stock in relation to certain reference points and for estimating how quickly a stock can be rebuilt. However, these methods typically require catch data, which are not always available. We introduce a model-based framework for estimating reference points, stock status, and recovery times in situations where catch data and other measures of absolute abundance are unavailable. The specif ic estimator developed is essentially an age-structured production model recast in terms relative to pre-exploitation levels. A Bayesian estimation scheme is adopted to allow the incorporation of pertinent auxiliary information such as might be obtained from meta-analyses of similar stocks or anecdotal observations. The approach is applied to the population of goliath grouper (Epinephelus itajara) off southern Florida, for which there are three indices of relative abundance but no reliable catch data. The results confirm anecdotal accounts of a marked decline in abundance during the 1980s followed by a substantial increase after the harvest of goliath grouper was banned in 1990. The ban appears to have reduced fishing pressure to between 10% and 50% of the levels observed during the 1980s. Nevertheless, the predicted fishing mortality rate under the ban appears to remain substantial, perhaps owing to illegal harvest and depth-related release mortality. As a result, the base model predicts that there is less than a 40% chance that the spawning biomass will recover to a level that would produce a 50% spawning potential ratio.
Resumo:
Local communities and local government units are recognized as the primary stakeholders and participants in the management of coral reef resources and the primary beneficiaries of small-scale fishing activities in the nearshore areas of the coastal zone. The issues relating to the management of the coastal zone are multi-faceted and some issues are largely intertwined with national policy and development goals. Thus, national governments have jurisdiction over these nearshore coastal resources to harmonize policies, monitor resource use and provide incentives for sustainable use. However, the natural boundaries of these reef resources, the processes that support reef ecosystems, and the local or national affiliation of the people who benefit from them may transcend the boundaries of the local and national management units. Therefore, efforts to arrest the decline in fish catch and loss of biodiversity for reefs require management interventions and assessment activities to be carried out at varying scales. In Southeast Asia, some aspects of reef and reef resources management — particularly in deciding the allocation of catch among competing fisheries, development of sustainable harvest strategies, use of broodstock for restocking or stock enhancement programs, protection of nursery and spawning areas, designation of systems of marine protected areas, and the identification of representative, adequate and comprehensive areas for biodiversity conservation in the region — may require the definition of larger management units. At the regional level, multi-country initiatives will need to define units for the transboundary management of resources. The use of large marine ecosystems (LMEs) to identify and manage fisheries resources may be a starting point; however, given the relatively sedentary nature of coral reef-dwelling and reef-associated organisms compared with other pelagic and demersal species, meso-scale transboundary units within the LMEs have to be defined. This paper provides suggestions for transboundary management units for coral reef and reef-associated resources in Southeast Asia based on information from genetic structures of model organisms in the region. In addition, specific reef areas are identified, which may be important beyond their national boundaries, as potential sources of recruits.
Resumo:
The South China Sea is an important fishing area with an annual harvest of some 5 million tonnes, or 10% of the catches jointly taken by the developing nations of the world. Details are given of a model of the area describing fisheries catches and biological interactions. The area, viewed as a large marine ecosystem, was divided into 10 subsystems; each subsystem was then linked with adjacent subsystems by predatory links, and detritus flows. An analysis was then made of catch statistics for each of the subsystems. It is believed that if all systems could be harvested at around the highest efficiency, an additional 5-6 million tonnes could be taken annually from the South China Sea; however, more refined analyses are needed to further investigate these possibilities. If linked with careful studies of the economic and human aspects of fishing, such analyses will provide guidelines for integrated fisheries management advice.
Resumo:
Women in India are involved in various facets of shrimp (Penaeus monodon; Penaeus indicus) farming, including pond construction, seed collection, collection of feed materials and preparation of feeds, pond maintenance and post-harvest handling. This study indicates that 40% of laborers involved in shrimp farm construction are women. The various roles of women in shrimp farming are also described.
Resumo:
The 1997 International Year of the Reef sees the release of ReefBase 2.0: a global database on coral reefs and their resources. It provides the most comprehensive and accessible repository of information to date. Containing information on over 7000 coral reefs in more than 123 countries, ReefBase 2.0 offers an extensive range of time-related data pertaining to coastal tourism, benthic environment ecology, fish population statistics, oceanography, socioeconomics, mariculture, and harvest activities. It also outlines the stresses causing reef degradation as well as management initiatives. Complemented by hundreds of digitized maps provided by the World Conservation Monitoring Centre (WCMC) and over 500 high quality photographs, ReefBase 2.0 is not only an essential tool for coral reef management but also an comprehensive guide for tourists, scuba divers and snorkelers alike. ReefBase has contributed substantially to the success of the International Coral Reef Institute (ICRI) and serves as the official database of the Global Coral Reef Monitoring Network (GCRMN), bringing together an increasing volume of data on coral reef health, management and significance to humanity, and making it widely available. Over the next five years, the information contained within ReefBase will be utilized as an instrument for developing coral reef health assessment criteria, sustainable management criteria, and providing continuously updated summaries of threats endangering coral reefs around the globe. This will be a strong basis for focused corrective action in an attempt to conserve coral reefs and properly manage their resources for future generations.
Resumo:
In this paper we present livestock breeding developments that could be taken into consideration in the genetic improvement of farmed aquaculture species, especially in freshwater fish. Firstly, the current breeding objective in aquatic species has focused almost exclusively on the improvement of body weight at harvest or on growth related traits. This is unlikely to be sufficient to meet the future needs of the aquaculture industry. To meet future demands breeding programs will most likely have to include additional traits, such as fitness related ones (survival, disease resistance), feed efficiency, or flesh quality, rather than only growth performance. In order to select for a multi-trait breeding objective, genetic variation in traits of interest and the genetic relationships among them need to be estimated. In addition, economic values for these traits will be required. Generally, there is a paucity of data on variable and fixed production costs in aquaculture, and this could be a major constraint in the further expansion of the breeding objectives. Secondly, genetic evaluation systems using the restricted maximum likelihood method (REML) and best linear unbiased prediction (BLUP) in a framework of mixed model methodology could be widely adopted to replace the more commonly used method of mass selection based on phenotypic performance. The BLUP method increases the accuracy of selection and also allows the management of inbreeding and estimation of genetic trends. BLUP is an improvement over the classic selection index approach, which was used in the success story of the genetically improved farmed tilapia (GIFT) in the Philippines, with genetic gains from 10 to 20 per cent per generation of selection. In parallel with BLUP, optimal genetic contribution theory can be applied to maximize genetic gain while constraining inbreeding in the long run in selection programs. Thirdly, by using advanced statistical methods, genetic selection can be carried out not only at the nucleus level but also in lower tiers of the pyramid breeding structure. Large scale across population genetic evaluation through genetic connectedness using cryopreserved sperm enables the comparison and ranking of genetic merit of all animals across populations, countries or years, and thus the genetically superior brood stock can be identified and widely used and exchanged to increase the rate of genetic progress in the population as a whole. It is concluded that sound genetic programs need to be established for aquaculture species. In addition to being very effective, fully pedigreed breeding programs would also enable the exploration of possibilities of integrating molecular markers (e.g., genetic tagging using DNA fingerprinting, marker (gene) assisted selection) and reproductive technologies such as in-vitro fertilization using cryopreserved spermatozoa.
Resumo:
The increasing harvest of 7 edible seaweeds in Fiji and their importance to the economy of indigenous Fijians are discussed. Traditional methods in the collection, preparation and consumption of seaweeds by the Fijians are also presented.
Resumo:
This paper assesses the costs and benefits of a proposed project for restocking sandfish (Holothuria scabra) in Khanh Hoa Province, Vietnam. It identifies the key stakeholders, institutional framework, management and financing required for its implementation. The recommended management strategy includes a 50 percent harvest at optimum size. Limiting the number of boats fishing an area, possibly through licensing, can control the number of sandfish removed. The easiest way to prevent harvesting of undersized sandfish is to control the size of processed sandfish from processors. The potential benefits of restocking are shown by the rapid changes in selected indicators, particularly the net present value, the internal rate of return, and the benefit-cost ratio. Probability analysis is used to estimate the uncertainties in the project calculations. Based on a conservative estimate, the restocking of sandfish is expected to be profitable, although cost-benefit analyses are sensitive to the survival of restocked sandfish and their progeny, and the number of boats fishing for sandfish in the release area.
Resumo:
Bush park fishing / padal fishing is an indigenous fishing method widely employed in the Ashtamudi estuary of Kerala (south India). An artificial reef made from twigs and leaves of trees is planted in the shallow areas of the estuary. The aim is to harvest fish that find shelter in these structures for the purpose of feeding and breeding. Though the State Department of Fisheries has banned this method of fishing in the inland waters of Kerala, 400 padals are operating in this estuary. About 300 of them are anchored in the western parts of the estuary (west Kayal). Fish are harvested in the padals at monthly intervals almost round the year and this results in the destruction of a sizeable quantity of juveniles and sub-adults of the commercially important fishes, such as Pearl spot and mullets, from the estuary. These padals pose a major threat to the sustainability of the fishery resources of this estuary and, therefore, need to be phased out by providing alternative occupations for the fishermen who are dependant on the padals.
Resumo:
The Lower Mekong Basin has extensive wetlands and these are being threatened by numerous problems. Most of these problems are interdependent and interact with one another. The lack of an appropriate definition of wetlands applicable to the region, pervasive inefficiencies and chronic lack of funds among riparian governments, and the poor appreciation of the true economic importance of wetlands and its resources are among the most prominent. The current definition, based on the Convention on Wetlands (Ramsar, Iran, 1971), is too broad when compared to the understanding of wetlands as being swamps, marshes and the like, and was developed specifically for wetlands with international importance as waterfowl habitats. Furthermore, wetlands are composed of different types of resources, which require different modes of management. Often, institutional competition, overlapping mandates and sometimes jealousies occur between government departments when they try to assert their authority on a particular wetland resource and use, and put forward their development plans without considering how these may conflict with other wetlands uses. Finally, effective wetland management requires reliable statistics or information on rate of harvest of natural resources such as fish and others, fishing/harvesting methods over time in order to determine the level of exploitation, and the status of the natural resources. This information is needed to identify opportunities for expansion, to establish historical trends, and to determine when management interventions are necessary to protect the resources from being overused by other developments. In order to address these issues, ICLARM - The World Fish Center has launched a project, the aim of objectives of which are described in this paper.
Resumo:
We summarize the life history characteristics of silvergray rockfish (Sebastes brevispinis) based on commercial fishery data and biological samples from British Columbia waters. Silvergray rockfish occupy bottom depths of 100−300 m near the edge of the continental shelf. Within that range, they appear to make a seasonal movement from 100−200 m in late summer to 180−280 m in late winter. Maximum observed age in the data set was 81 and 82 years for females and males, respectively. Maximum length and round weight was 73 cm and 5032 g for females and 70 cm and 3430 g for males. The peak period of mating lasted from December to February and parturition was concentrated from May to July. Both sexes are 50% mature by 9 or 10 years and 90% are mature by age 16 for females and age 13 years for males. Fecundity was estimated from one sample of 132 females and ranged from 181,000 to 1,917,000 oocytes and there was no evidence of batch spawning. Infection by the copepod parasite Sarcotaces arcticus appears to be associated with lower fecundity. Sexual maturation appears to precede recruitment to the trawl fishery; thus spawning stock biomass per recruit analysis (SSB/R) indicates that a F50% harvest target would correspond to an F of 0.072, 20% greater than M (0.06). Fishery samples may bias estimates of age at maturity but a published meta-data analysis, in conjunction with fecundity data, independently supports an early age of maturity in relation to recruitment. Although delayed recruitment to the fishery may provide more resilience to exploitation, managers may wish to forego maximizing economic yield from this species. Silvergray rockfish are a relatively minor but unavoidable part of the multiple species trawl catch. Incorrectly “testing” the resilience of one species may cause it to be the weakest member of the specie
Resumo:
Fishing is widely recognized to have profound effects on estuarine and marine ecosystems (Hammer and Jansson, 1993; Dayton et al., 1995). Intense commercial and recreational harvest of valuable species can result in population collapses of target and nontarget species (Botsford et al., 1997; Pauly et al., 1998; Collie et al. 2000; Jackson et al., 2001). Fishing gear, such as trawls and dredges, that are dragged over the seafloor inflict damage to the benthic habitat (Dayton et al., 1995; Engel and Kvitek, 1995; Jennings and Kaiser, 1998; Watling and Norse, 1998). As the growing human population, over-capitalization, and increasing government subsidies of fishing place increasing pressures on marine resources (Myers, 1997), a clear understanding of the mechanisms by which fishing affects coastal systems is required to craft sustainable fisheries management.
Resumo:
Survey- and fishery-derived biomass estimates have indicated that the harvest indices for Pacific cod (Gadus macrocephalus) within a portion of Steller sea lion (Eumetopias jubatus) critical habitat in February and March 2001 were five to 16 times greater than the annual rate for the entire Bering Sea-Aleutian Islands stock. A bottom trawl survey yielded a cod biomass estimate of 49,032 metric tons (t) for the entire area surveyed, of which less than half (23,329 t) was located within the area used primarily by the commercial fishery, which caught 11,631 t of Pacific cod. Leslie depletion analyses of fishery data yielded biomass estimates of approximately 14,500 t (95% confidence intervals of approximately 9,000–25,000 t), which are within the 95% confidence interval on the fished area survey estimate (12,846–33,812 t). These data indicate that Leslie analyses may be useful in estimating local fish biomass and harvest indices for certain marine fisheries that are well constrained spatially and relatively short in duration (weeks). In addition, fishery effects on prey availability within the time and space scales relevant to foraging sea lions may be much greater than the effects indicated by annual harvest rates estimated from stock assessments averaged across the range of the target spec