80 resultados para HTML5, MVC, GIS
Resumo:
A density prediction model for juvenile brown shrimp (Farfantepenaeus aztecus) was developed by using three bottom types, five salinity zones, and four seasons to quantify patterns of habitat use in Galveston Bay, Texas. Sixteen years of quantitative density data were used. Bottom types were vegetated marsh edge, submerged aquatic vegetation, and shallow nonvegetated bottom. Multiple regression was used to develop density estimates, and the resultant formula was then coupled with a geographical information system (GIS) to provide a spatial mosaic (map) of predicted habitat use. Results indicated that juvenile brown shrimp (<100 mm) selected vegetated habitats in salinities of 15−25 ppt and that seagrasses were selected over marsh edge where they co-occurred. Our results provide a spatially resolved estimate of high-density areas that will help designate essential fish habitat (EFH) in Galveston Bay. In addition, using this modeling technique, we were able to provide an estimate of the overall population of juvenile brown shrimp (<100 mm) in shallow water habitats within the bay of approximately 1.3 billion. Furthermore, the geographic range of the model was assessed by plotting observed (actual) versus expected (model) brown shrimp densities in three other Texas bays. Similar habitat-use patterns were observed in all three bays—each having a coefficient of determination >0.50. These results indicate that this model may have a broader geographic application and is a plausible approach in refining current EFH designations for all Gulf of Mexico estuaries with similar geomorphological and hydrological characteristics.
Resumo:
Two halfbeak species, ballyhoo (Hemiramphus brasiliensis) and balao (H. balao), are harvested as bait in south Florida waters, and recent changes in fishing effort and regulations prompted this investigation of the overlap of halfbeak fishing grounds and spawning grounds. Halfbeaks were sampled aboard commercial fishing vessels, and during fishery-independent trips, to determine spatial and temporal spawning patterns of both species. Cyclic patterns of gonadosomatic indices (GSIs) indicated that both species spawned during spring and summer months. Histological analysis demonstrated that specific stages of oocyte development can be predicted from GSI values; for example, female ballyhoo with GSIs >6.0 had hydrated oocytes that were 2.0−3.5 mm diameter. Diel changes in oocyte diameters and histological criteria demonstrated that final oocyte maturation occurred over a 30- to 36-hour period and that ballyhoo spawned at dusk. Hydration of oocytes began in the morning, and ovulation occurred at sunset of that same day; therefore females with hydrated oocytes were ready to spawn within hours. We compared maps of all locations where fish were collected to maps of locations where spawning females (i.e. females with GSIs >6.0) were collected to determine the degree of overlap of halfbeak fishing and spawning grounds. We also used geographic information system (GIS) data to describe the depth and bottom type of halfbeak spawning grounds. Ballyhoo spawned all along the coral reef tract of the Atlantic Ocean, inshore of the reef tract, and in association with bank habitats within Florida Bay. In the Atlantic Ocean, balao spawned along the reef tract and in deeper, more offshore waters than did ballyhoo; balao were not found inshore of the coral reef tract or in Florida Bay. Both halfbeak species, considered together, spawned throughout the fishing grounds of south Florida.
Resumo:
In the face of dramatic declines in groundfish populations and a lack of sufficient stock assessment information, a need has arisen for new methods of assessing groundfish populations. We describe the integration of seafloor transect data gathered by a manned submersible with high-resolution sonar imagery to produce a habitat-based stock assessment system for groundfish. The data sets used in this study were collected from Heceta Bank, Oregon, and were derived from 42 submersible dives (1988–90) and a multibeam sonar survey (1998). The submersible habitat survey investigated seafloor topography and groundfish abundance along 30-minute transects over six predetermined stations and found a statistical relationship between habitat variability and groundfish distribution and abundance. These transects were analyzed in a geographic information system (GIS) by using dynamic segmentation to display changes in habitat along the transects. We used the submersible data to extrapolate fish abundance within uniform habitat patches over broad areas of the bank by means of a habitat classification based on the sonar imagery. After applying a navigation correction to the submersible-based habitat segments, a good correlation with major boundaries on the backscatter and topographic boundaries on the imagery were apparent. Extrapolation of the extent of uniform habitats was made in the vicinity of the dive stations and a preliminary stock assessment of several species of demersal fish was calculated. Such a habitat-based approach will allow researchers to characterize marine communities over large areas of the seafloor.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Potential (clear-sky) radiation receipt is modeled for the slopes of the H.J. Andrews Experimental Forest Long-Term Ecological Research site in the foothills of the southern Cascade mountains of central Oregon. The modeling method developed by Williams is selected and applied to the forest area for the times of the solstices and equinox as well as mid-month times in January, February, April, and May in order to completely characterize the seasonal change of potential radiation at the location. ... It seems that Lookout Creek approximately divides the Andrews Forest into an area of relatively high potential radiation to the north of the creek and relatively lower potential radiation values to the south of the creek. Potential radiation values seem to be associated with the Andrews GIS data layers of debris flows and predominant tree species zones.
Resumo:
Training included: Geographic Information System (GIS)concept and software; Global Positioning System (GPS); Ecological Gap Analysis and Marine Protected Area (MPA) design using Marine Reserve Design using Spatially Explicit Annealing (MARXAN); and cartography.