100 resultados para Frugivorous mammals
Resumo:
The present paper reports the extraction of DNA from formalin-fixed Pontoporia blainvillei tissues. Following the Vachot and Monerot (1996) protocol, fragmented DNA (300-700bp) was extracted from more than 95% of liver and muscle samples. DNA yield in liver samples was significantly higher than in muscle samples (4.574 ± 1.169mg DNA/mg versus 0.808 ± 0.297mg DNA/mg). Similar results were obtained from nine other species of cetaceans and five species of pinnipeds. It is of special interest to have a method that allows the utilisation of museum specimens not originally preserved for genetic studies, which may include rarely available, declining or extinct species. SPANISH: El presente trabajo reporta la extracción de ADN a partir de tejidos formolizados de Pontoporia blainvillei. Siguiendo el protocolo de Vachot y Monerot (1996) se pudo extraer ADN degradado (300-700pb) en más del 95% de las muestras de hígado y músculo analizadas. El rendimiento en ADN fue significativamente mayor en muestras de hígado que en muestras de músculo (4.574 ± 1.169mg DNA/mg tejido húmedo versus 0.808 ± 0.297mg DNA/mg tejido húmedo). Resultados similares se obtuvieron en otras nueve especies de Cetáceos y cinco de Pinnípedos. Resulta de gran interés contar con un método que permita la utilización de especímenes depositados en museos y que no hayan sido originalmente colectados para estudios genéticos, incluyendo especies de difícil obtención, en franca declinación o extintas.
Resumo:
Marine mammals accumulate heavy metals in their tissues at different concentrations according to trophic levels and environmental conditions. The franciscana (Pontoporia blainvillei) is a small coastal species inhabiting the marine and estuarine areas of the Southwestern Atlantic Ocean. Its diet includes numerous species of small fish, squid and crustaceans. The aims of this study were to (i) assess the heavy metal concentration and burden distribution in different franciscana age classes and sex, and to (ii) evaluate both the accumulation processes and the transplacental transference of zinc, cadmium, copper and total mercury. Heavy metal concentrations (wet weight) were determined in eighteen dolphins by Atomic Absorption Spectrophotometry (AAS), by the cold vapour technique (mercury) or with air/acetylene flame (cadmium, zinc and copper). Liver showed the highest concentrations of mercury (max. 8.8 mg/g), zinc (max. 29.7 mg/g) and copper (max. 19.0 mg/g), whereas the highest cadmium concentrations (max. 6.7 mg/g) were found in kidney. Adults contained the highest concentrations for all heavy metals, followed by juveniles and calves in decreasing order, suggesting an age-related accumulation. No differences (p<0.05) were found between sexes within each age class. Organ burden distribution followed the same pattern for all metals and age classes: liver tissues contained maximum burdens. Mercury concentrations were higher than those of cadmium in both foetuses and newborns; and neither metal could be detected in the foetus. The analysed data suggested differences in the placental transference between metals, being significant for mercury and almost null in the case of cadmium. We can conclude that franciscana accumulates heavy metals and, due to its coastal distribution, it may be considered as a biomonitor of its environment. SPANISH: Los mamíferos marinos acumulan metales pesados en sus tejidos cuyas concentraciones están en relación con su nivel trófico y las condiciones ambientales. La franciscana (Pontoporia blainvillei) es una especie costera que habita áreas marinas y estuariales en el Atlántico Sudoccidental. Su dieta está constituída por peces, como item alimentario principal, calamares y crustáceos. El objetivo del presente trabajo es estudiar la distribución de metales pesados en diferentes clases de edad y en ambos sexos, evaluando procesos de acumulación y cargas de cadmio, mercurio total, cinc y cobre. Las concentraciones de metales pesados (en peso húmedo) fueron determinadas en dieciocho delfines por Espectrofotometría de Absorción Atómica (EAA), usando la técnica de vapor frío (mercurio) o llama de aire/acetileno (cadmio, cinc y cobre). El hígado presentó las concentraciones más altas de mercurio (máx. 8,8 mg/g), cinc (máx. 29,7 mg/g) y cobre (máx. 19,0 mg/g), mientras que las más altas de cadmio (máx. 6,7 mg/g) fueron encontradas en el riñón. Los adultos presentaron los niveles más altos, presentando los juveniles y cachorros concentraciones menores, lo cual sugirió una acumulación con la edad. No se encontraron diferencias significativas (p < 0,05) entre sexos dentro de cada clase de edad. Las cargas de metales pesados en los órganos presentaron la misma disribución para todos los metales y clases de edad. Los valores más altos fueron encontrados en el hígado, incluyendo los correspondientes a cadmio. Las concentraciones de mercurio y cadmio fueron no detectables en el feto, mientras que las de mercurio fueron superiores a las de cadmio en los cachorros. Los datos encontrados en el feto sugieren una transferencia nula a través de la placenta. Podemos concluir que P.blainvillei acumula metales pesados en sus tejidos y debido a su distribución costera, esta especie puede ser considerada como un biomonitor de su ambiente.
Resumo:
Stomach contents of 110 franciscanas (Pontoporia blainvillei), from northern Argentina were analysed in order to improve our knowledge about the feeding habits of this species and to better characterise the lactation period. The samples included calves, juveniles and adults of both sexes. Evidence of predation by franciscanas is seen at a very young age (2.5-3 months), with a transition diet composed by both milk and solid food, mainly represented by crustaceans. Weaning seems to begin by April, when franciscanas are about 6-7 months old. Franciscanas inhabiting two different habitats were analysed in this study: a brackish water estuary and an adjacent marine coastal system. The diet of Pontoporia blainvillei in northern Argentina was composed by a total of 26 prey species: 20 teleosts, 4 crustaceans and 2 cephalopods. Based on the Index of Relative Importance (IRI) the main prey species were Cynoscion guatucupa, Micropogonias furnieri, Loligo sanpaulensis and Urophycis brasiliensis. Estuarine franciscanas preyed mainly on Micropogonias furnieri (dominant species), Cynoscion guatucupa, Odonthestes argentinensis and Macrodon ancylodon, while dolphins from marine areas preyed mainly on Cynoscion guatucupa (dominant species), Loligo sanpaulensis and Urophycis brasiliensis. Our results confirm that franciscanas prey mainly on juvenile fish (< 8cm) and small loliginid squids, in close agreement with previous results obtained in southern Brazil and Uruguay. Qualitative and quantitative differences observed in the diet of dolphins from each habitat emphasise the need to discriminate between samples from different habitats and environmental parameters. SPANISH: Se analizaron 110 contenidos estomacales de franciscanas (Pontoporia blainvillei) provenientes de la costa norte de Argentina, para extender en conocimiento sobre su dieta y caracterizar la lactancia. Las muestras incluyeron cachorros, juveniles y adultos de ambos sexos. Las primeras etapas de predación se inician a muy temprana edad (2,5-3 meses), presentando una dieta de transición compuesta tanto por leche como por presas sólidas, principalmente crustáceos; el destete se iniciaría a partir de abril, a una edad estimada entre 6 y 7 meses. Las franciscanas estudiadas provienen de dos habitats diferentes: un área estuarial de baja salinidad y la region marina adyacente. La dieta de Pontoporia blainvillei de Argentina estuvo compuesta por un total de 26 especies: 20 teleósteos, 4 crustáceos y 2 cefalópodos. Basados en el Indice de Importancia Relativa (IIR), las presas más importantes fueron Cynoscion guatucupa, Micropogonias furnieri, Loligo sanpaulensis y Urophycis brasiliensis. Las franciscanas provenientes del área estuarial predaron principalmente sobre Micropogonias furnieri (especie dominante), Cynoscion guatucupa, Odonthestes argentinensis y Macrodon ancylodon, mientras que los delfines marinos predaron sobre Cynoscion guatucupa (especie dominante), Loligo sanpaulensis y Urophycis brasiliensis. Nuestros resultados confirman que la franciscana preda sobre peces juveniles (< 8cm) y pequeños calamares Loliginidae, coincidiendo con resultados previos obtenidos en el sur del Brasil y Uruguay. Las diferencias cualitativas y cuantitativas observadas en la dieta de cada uno de las áreas analizadas, nos sugieren que los futuros estudios sobre ecología trófica de la franciscana deberían discriminarse de acuerdo al origen de los ejemplares y a la tipificación del ambiente.
Resumo:
◾ Report of Opening Session (p. 1) ◾ Report of Governing Council (p. 15) ◾ Report of the Finance and Administration Committee (p. 47) ◾ Reports of Science Board and Committees: Science Board Inter-sessional Meeting (p. 63); Science Board (p. 73); Biological Oceanography Committee (p. 87); Fishery Science Committee (p. 95); Marine Environmental Quality Committee (p. 105); MONITOR Technical Committee (p. 115); Physical Oceanography and Climate Committee (p. 125); Technical Committee on Data Exchange (p. 133) ◾ Reports of Sections, Working and Study Groups: Section on Carbon and Climate (p. 139); Section on Ecology of Harmful Algal Blooms in the North Pacific (p. 143); Working Group 18 on Mariculture in the 21st Century - The Intersection Between Ecology, Socio-economics and Production (p. 147); Working Group 19 on Ecosystem-Based Management Science and its Application to the North Pacific (p. 151); Working Group 20 on Evaluations of Climate Change Projections (p. 157); Working Group 21 on Non-indigenous Aquatic Species (p. 159); Study Group to Develop a Strategy for GOOS (p. 165) ◾ Reports of the Climate Change and Carrying Capacity Scientific Program: Implementation Panel on the CCCC Program (p. 169); CFAME Task Team (p. 175); MODEL Task Team (p. 181) ◾ Reports of Advisory Panels: Advisory Panel for a CREAMS/PICES Program in East Asian Marginal Seas (p. 187); Advisory Panel on Continuous Plankton Recorder Survey in the North Pacific (p. 193); Advisory Panel on Iron Fertilization Experiment in the Subarctic Pacific Ocean (p. 197); Advisory Panel on Marine Birds and Mammals (p. 201); Advisory Panel on Micronekton Sampling Inter-calibration Experiment (p. 205) ◾ Summary of Scientific Sessions and Workshops (p. 209) ◾ Membership List (p. 259) ◾ List of Participants (p. 277) ◾ List of PICES Acronyms (p. 301) ◾ List of Acronyms (p. 303)
Resumo:
Report of Opening Session (p. 1). Report of Governing Council (p. 15). Report of the Finance and Administration Committee (p. 65). Reports of Science Board and Committees: Science Board Inter-Sessional Meeting (p. 83); Science Board (p. 93); Biological Oceanography Committee (p. 105); Fishery Science Committee (p. 117); Marine Environmental Quality Committee (p. 129); Physical Oceanography and Climate Committee (p. 139); Technical Committee on Data Exchange (p. 145); Technical Committee on Monitoring (p. 153). Reports of Sections, Working and Study Groups: Section on Carbon and Climate (p. 161); Section on Ecology of Harmful Algal Blooms in the North Pacific (p. 167); Working Group 19 on Ecosystem-based Management Science and its Application to the North Pacific (p. 173); Working Group 20 on Evaluations of Climate Change Projections (p. 179); Working Group 21 on Non-indigenous Aquatic Species (p. 183); Study Group to Develop a Strategy for GOOS (p. 193); Study Group on Ecosystem Status Reporting (p. 203); Study Group on Marine Aquaculture and Ranching in the PICES Region (p. 213); Study Group on Scientific Cooperation between PICES and Non-member Countries (p. 225). Reports of the Climate Change and Carrying Capacity Program: Implementation Panel on the CCCC Program (p. 229); CFAME Task Team (p. 235); MODEL Task Team (p. 241). Reports of Advisory Panels: Advisory Panel for a CREAMS/PICES Program in East Asian Marginal Seas (p. 249); Advisory Panel on Continuous Plankton Recorder Survey in the North Pacific (p. 253); Advisory Panel on Iron Fertilization Experiment in the Subarctic Pacific Ocean (p. 255); Advisory Panel on Marine Birds and Mammals (p. 261); Advisory Panel on Micronekton Sampling Inter-calibration Experiment (p. 265). 2007 Review of PICES Publication Program (p. 269). Guidelines for PICES Temporary Expert Groups (p. 297). Summary of Scientific Sessions and Workshops (p. 313). Report of the ICES/PICES Conference for Early Career Scientists (p. 355). Membership (p. 367). Participants (p. 387). PICES Acronyms (p. 413). Acronyms (p. 415).
Resumo:
Bycatch, or the unintended capture of fish, marine mammals, sea turtles, and seabirds by fishing gear, occurs to some degree in most fisheries. The recently released National Marine Fisheries Service’s (NMFS) U.S. National Bycatch Report provides information on bycatch in U.S. commercial fisheries by fishery and species. The report also provides national statistics in the form of national bycatch ratio and a national bycatch estimate. We describe the methods used to develop these statistics and compare them to similar studies. We conclude that the national bycatch ratio and national bycatch estimates developed by NMFS represent the best available information on bycatch in U.S. fisheries. However, given changes in bycatch management over time, as well as inter-annual variability in bycatch levels and a high percentage of fisheries for which data on bycatch are not currently available, we recommend that NMFS continue to support bycatch data collection and reporting efforts to improve the quality and quantity of bycatch data and estimates available to fisheries managers and scientists over time. This will enable NMFS to meet its requirements for bycatch reporting under the Magnuson-Stevens Act (MSA), as well as requirements for bycatch minimization under the MSA, Marine Mammal Protection Act, and Endangered Species Act.
Resumo:
In 2006, the National Marine Fisheries Service, NOAA, initiated development of a national bycatch report that would provide bycatch estimates for U.S. commercial fisheries at the fishery and species levels for fishes, marine mammals, sea turtles, and seabirds. As part of this project, the need to quantify the relative quality of available bycatch data and estimation methods was identified. Working collaboratively with fisheries managers and scientists across the nation, a system of evaluation was developed. Herein we describe the development of this system (the “tier system”), its components, and its application. We also discuss the value of the tier system in allowing fisheries managers to identify research needs and efficiently allocate limited resources toward those areas that will result in the greatest improvement to bycatch data and estimation quality.
Resumo:
The mission of NOAA’s National Marine Sanctuary Program (NMSP) is to serve as the trustee for a system of marine protected areas, to conserve, protect, and enhance their biodiversity, ecological integrity, and cultural legacy while facilitating compatible uses. Since 1972, thirteen National Marine Sanctuaries, representing a wide variety of ocean environments, have been established, each with management goals tuned to their unique diversity. Extending from Cape Ann to Cape Cod across the mouth of Massachusetts Bay, Stellwagen Bank National Marine Sanctuary (NMS) encompasses 2,181 square kilometers of highly productive, diverse, and culturally unique Federal waters. As a result of its varied seafloor topography, oceanographic conditions, and high primary productivity, Stellwagen Bank NMS is utilized by diverse assemblages of seabirds, marine mammals, invertebrates, and fish species, as well as containing a number of maritime heritage resources. Furthermore, it is a region of cultural significance, highlighted by the recent discovery of several historic shipwrecks. Officially designated in 1992, Stellwagen Bank became the Nation’s twelfth National Marine Sanctuary in order to protect these and other unique biological, geological, oceanographic, and cultural features of the region. The Stellwagen Bank NMS is in the midst of its first management plan review since designation. The management plan review process, required by law, is designed to evaluate, enhance, and guide the development of future research efforts, education and outreach, and the management approaches used by Sanctuaries. Given the ecological and physical complexity of Stellwagen Bank NMS, burgeoning anthropogenic impacts to the region, and competing human and biological uses, the review process was challenged to assimilate and analyze the wealth of existing scientific knowledge in a framework which could enhance management decision-making. Unquestionably, the Gulf of Maine, Massachusetts Bay, and Stellwagen Bank-proper are extremely well studied systems, and in many regards, the scientific information available greatly exceeds that which is available for other Sanctuaries. However, the propensity of scientific information reinforces the need to utilize a comprehensive analytical approach to synthesize and explore linkages between disparate information on physical, biological, and chemical processes, while identifying topics needing further study. Given this requirement, a partnership was established between NOAA’s National Marine Sanctuary Program (NMSP) and the National Centers for Coastal Ocean Science (NCCOS) so as to leverage existing NOAA technical expertise to assist the Sanctuary in developing additional ecological assessment products which would benefit the management plan review process.
Resumo:
Marine mammals, such as dolphins, can serve as key indicator species in coastal areas by reflecting the effects of natural and anthropogenic stressors. As such they are often considered sentinels of environmental and ecosystem health (Bossart 2006; Wells et al. 2004; Fair and Becker 2000). The bottlenose dolphin is an apex predator and a key component of many estuarine environments in the southeastern United States (Woodward-Clyde Consultants 1994; SCDNR 2005). Health assessments of dolphins are especially critical in areas where populations are depleted, show signs of epidemic disease and/or high mortality and/or where habitat is being altered or impacted by human activities. Recent assessments of environmental conditions in the Indian River Lagoon, Florida (IRL) and the estuarine waters surrounding Charleston, South Carolina (CHS) highlight the need for studies of the health of local bottlenose dolphins. While the condition of southeastern estuaries was rated as fair in the National Coastal Condition Report (U.S. EPA 2001), it was noted that the IRL was characterized by poorer than expected benthic communities, significant sediment toxicity and increased nutrient concentrations. Similarly, portions of the CHS estuary have sediment concentrations of aliphatic aromatic hydrocarbons, select inorganic metals, and some persistent pesticides far in excess of reported bioeffect levels (Hyland et al. 1998). Long-term trends in water quality monitoring and recent scientific research suggest that waste load assimilation, non-point source runoff impacts, contaminated sediments, and toxic pollutants are key issues in the CHS estuary system. Several ‘hot spots’ with high levels of heavy metals and organic compounds have been identified (Van Dolah et al. 2004). High concentrations of anthropogenic trace metals, polychlorinated biphenyls (PCB’s) and pesticides have been found in the sediments of Charleston Harbor, as well as the Ashley and Cooper Rivers (Long et al. 1998). Two superfund sites are located within the CHS estuary and the key contaminants of concern associated with these sites are: polycyclic aromatic hydrocarbons (PAH), lead, chromium, copper, arsenic, zinc and dioxin. Concerns related to the overall health of IRL dolphins and dermatologic disease observed in many dolphins in the area (Bossart et al. 2003) initiated an investigation of potential factors which may have impacted dolphin health. From May-August 2001, 35 bottlenose dolphins died in the IRL during an unusual mortality event (MMC 2003). Many of these dolphins were diagnosed with a variety of skin lesions including proliferative ulcerative dermatitis due to protozoa and fungi, dolphin pox and a vesicular dermatopathy of unknown etiology (Bossart et al. 2003). Multiple species from fish to dolphins in the IRL system have exhibited skin lesions of various known and unknown etiologies (Kane et al. 2000; Bossart et al. 2003; Reif et al. 2006). On-going photo-identification (photo-ID) studies have documented skin diseases in IRL dolphins (Mazzoil et al. 2005). In addition, up to 70% of green sea turtles in the IRL exhibit fibropapillomas, with the highest rates of occurrence being seen in turtles from the southern IRL (Hirama 2001).
Resumo:
NOAA’s National Centers for Coastal Ocean Science (NCCOS) conducts and supports research, monitoring, assessments, and technical assistance to meet NOAA’s coastal stewardship and management responsibilities. In 2001 the Biogeography Branch of NCCOS partnered with NOAA’s National Marine Sanctuary Program (NMSP) to conduct biogeographic assessments to support the management plan updates for the sanctuaries. The first biogeographic assessment conducted in this partnership focused on three sanctuaries off north/ central California: Cordell Bank, Gulf of the Farallones and Monterey Bay. Phase I of this assessment was conducted from 2001 to 2004, with the primary goal to identify and gather the best available data and information to characterize and identify important biological areas and time periods within the study area. The study area encompasses the three sanctuaries and extends along the coastal ocean off California from Pt. Arena to Pt. Sal (35°-39°N). This partnership project was lead by the NCCOS Biogeography Branch, but included over 90 contributors and 25 collaborating institutions. Phase I results include: 1) a report on the overall assessment that includes hundreds of maps, tables and analyses; 2) an ecological linkage report on the marine and estuarine ecosystems along the coast of north/central California, and 3) related geographic information system (GIS) data and other summary data files, which are available for viewing and download in several formats at the following website: http://ccma.nos.noaa.gov/products/biogeography/canms_cd/welcome.html Phase II (this report) was initiated in the Fall of 2004 to complete the analyses of marine mammals and update the marine bird colony information. Phase II resulted in significant updates to the bird and mammal chapters, as well as adding an environmental settings chapter, which contains new and existing data and maps on the study area. Specifically, the following Phase II topics and items were either revised or developed new for Phase II: •environmental, ecological settings – new maps on marine physiographic features, sea surface temperature and fronts, chlorophyll and productivity •all bird colony or roost maps, including a summary of marine bird colonies •updated at-sea data CDAS data set (1980-2003) •all mammal maps and descriptions •new overall density maps for eight mammal species •new summary pinniped rookery/haulout map •new maps on at-sea richness for cetaceans and pinnipeds •most text in the mammal chapter •new summary tables for mammals on population status and spatial and temporal patterns
Resumo:
Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.
Resumo:
This cruise report is a summary of a field survey conducted along a portion of the U.S. continental shelf in northwestern Gulf of Mexico (GOM), at navigable depths along the coastline seaward to the shelf break (~100m) from about 89°30' W to 95°28' W longitude, August 8 – 16, 2011 on NOAA Ship Nancy Foster Cruise NF-11-07-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 34 stations throughout these waters using a random probabilistic sampling design. The original study design consisted of 50 stations extending from the Mississippi delta all the way to the U.S./Mexican border, but vessel failures precluded sampling at 16 stations within the western-most portion of the study area. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. Other indicators, from a human-dimension perspective, were also recorded, including presence of vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing, some preliminary results and observations are reported here. A final report will be completed once all data have been processed.