121 resultados para ECOSYSTEM
Resumo:
Many common fishes associated with Caribbean coral reef ecosystems use resources from more than 1 patch type during routine daily foraging activities. Few studies have provided direct evidence of connectivity across seascapes, and the importance of benthic seascape structure on movement behavior is poorly known. To address this knowledge gap, we coupled hydro-acoustic technology to track fish with seafloor mapping and pattern analysis techniques from landscape ecology to quantify seascape structure. Bluestriped grunts Haemulon sciurus and schoolmaster snapper Lutjanus apodus were tracked over 24 h periods using boat-based acoustic telemetry. Movement pathways, and day and night activity spaces were mapped using geographical information system (GIS) tools, and seafloor structure within activity spaces was mapped from high-resolution aerial photography and quantified using spatial pattern metrics. For both fish species, night activity spaces were significantly larger than day activity spaces. Fish exhibited a daytime preference for seascapes with aggregate coral reef and colonized bedrock, then shifted to night activity spaces with lower complexity soft sediment including sand, seagrass, and scattered coral/rock. Movement path complexity was negatively correlated with seascape complexity. This demonstrates direct connectivity across multiple patch types and represents the first study to apply quantitative landscape ecology techniques to examine the movement ecology of marine fish. The spatially explicit approach facilitates understanding to the linkages between biological processes and the heterogeneity of the landscape. Such studies are essential for identifying ecologically relevant spatial scales, delineating essential fish habitat and designing marine protected areas.
Resumo:
This cruise report is a summary of a field survey conducted along the continental shelf of the northeastern Gulf of Mexico (GOM), encompassing 70,062 square kilometers of productive marine habitats located between the Mississippi Delta and Tampa Bay, August 13–21, 2010 on NOAA Ship Nancy Foster Cruise NF-10-09-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 50 stations throughout these waters using a random probabilistic sampling design. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, TPHs, PAHs, PCBs, PBDEs) in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, turbidity, pH, CDOM fluorescence, sediment grain size, and organic carbon content. Discrete water samples were collected just below the sea surface, in addition to any deeper subsurface depths where there was an occurrence of suspicious CDOM fluorescence signals, and analyzed for total BTEX/TPH and carcinogenic PAHs using immunoassay test kits. Other indicators of potential value from a human-dimension perspective were also recorded, including presence of any vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. In addition to the original project goals, both the scientific scope and general location of this project are relevant to addressing potential ecological impacts of the Deepwater Horizon oil spill. While sample analysis is still ongoing, a few preliminary results and observations are reported here. A final report will be completed once all data have been processed.
Resumo:
Moving ecosystem modeling from research to applications and operations has direct management relevance and will be integral to achieving the water quality and living resource goals of the 2010 Chesapeake Bay Executive Order. Yet despite decades of ecosystem modeling efforts of linking climate to water quality, plankton and fish, ecological models are rarely taken to the operational phase. In an effort to promote operational ecosystem modeling and ecological forecasting in Chesapeake Bay, a meeting was convened on this topic at the 2010 Chesapeake Modeling Symposium (May, 10-11). These presentations show that tremendous progress has been made over the last five years toward the development of operational ecological forecasting models, and that efforts in Chesapeake Bay are leading the way nationally. Ecological forecasts predict the impacts of chemical, biological, and physical changes on ecosystems, ecosystem components, and people. They have great potential to educate and inform not only ecosystem management, but also the outlook and opinion of the general public, for whom we manage coastal ecosystems. In the context of the Chesapeake Bay Executive Order, ecological forecasting can be used to identify favorable restoration sites, predict which sites and species will be viable under various climate scenarios, and predict the impact of a restoration project on water quality.
Resumo:
NOAA/NCCOS is conducting the following work for the NOAA California Current Integrated Ecosystem Assessment, in support of the NOAA/NMFS Northwest Fisheries Science Center.
Resumo:
Few studies have quantified the extent of nocturnal cross-habitat movements for fish, or the influence of habitat adjacencies on nutrient flows and trophodynamics. To investigate the patterns of nocturnal cross-boundary movements of fish and quantify trophic connectivity, fish were sampled at night with gillnets set along the boundaries between dominant habitat types (coral reef/seagrass and mangrove/seagrass) in southwestern Puerto Rico. Fish movement across adjacent boundary patches were equivalent at both coral reefs and mangroves. Prey biomass transfer was greater from seagrass to coral reefs (0.016 kg/km) and from mangroves to seagrass (0.006 kg/km) but not statistically significant, indicating a balance of flow between adjacent habitats. Pelagic species (jacks, sharks, rays) accounted for 37% of prey biomass transport at coral reef/seagrass and 46% at mangrove/seagrass while grunts and snappers accounted for 7% and 15%, respectively. This study indicated that coral reefs and mangroves serve as a feeding area for a wide range of multi-habitat fish species. Crabs were the most frequent prey item in fish leaving coral reefs while molluscs were observed slightly more frequently than crabs in fish entering coral reefs. For most prey types, biomass exported from mangroves was greater than biomass imported. The information on direction of fish movement together with analysis of prey data provided strong evidence of ecological linkages between distinct adjacent habitat types and highlighted the need for greater inclusion of a mosaic of multiple habitats when attempting to understand ecosystem function including the spatial transfer of energy across the seascape.
Resumo:
This memorandum has four parts. The first is a review and partial synthesis of Phase 1 and Phase 2 Reports by Dr. Ernest Estevez of the Mote Marine Laboratory to the Board of County Commissioners of Sarasota County, Florida. The review and synthesis emphasizes identification of the most important aspects of the structure of the Myakka system in terms of forcing functions, biological components, and major energy flows. In this context, the dominant primary producers, dominant fish species and food habits, and major environmental variables were of articular interest. A major focus of the review and synthesis was on the river zonations provided in the report and based on salinity and various biological indicators. The second part of this memorandum is a review of a draft report by Mote Marine Laboratory on evaluation of potential water quality impacts on the Myakka River from proposed activities in the watershed. This Memorandum's third part is a review of resource-management related ecosystem models in the context of possible future models of the Myakka River Ecosystem. The final part of this memorandum is proposed future work as an extension of the initial reports.
Resumo:
Snoek (Thyrsites atun) is a valuable commercial species and an important predator of small pelagic fishes in the Benguela ecosystem. The South African population attains 50% sexual maturity at a fork length of ca.73.0 cm (3 years). Spawning occurs offshore during winter−spring, along the shelf break (150–400 m) of the western Agulhas Bank and the South African west coast. Prevailing currents transport eggs and larvae to a primary nursery ground north of Cape Columbine and to a secondary nursery area to the east of Danger Point; both shallower than 150 m. Juveniles remain on the nursery grounds until maturity, growing to between 33 and 44 cm in the first year (3.25 cm/month). Onshore– offshore distribution (between 5- and 150-m isobaths) of juveniles is deter-mined largely by prey availability and includes a seasonal inshore migration in autumn in response to clupeoid recruitment. Adults are found through-out the distribution range of the species, and although they move offshore to spawn—there is some southward dispersion as the spawning season progresses—longshore movement is apparently random and without a seasonal basis. Relative condition of both sexes declined dramatically with the onset of spawning. Mesenteric fat loss was, however, higher in females, despite a greater rate of prey consumption. Spatial differences in sex ratios and indices of prey consumption suggest that females on the west coast move inshore to feed between spawning events, but that those found farther south along the western Agulhas Bank remain on the spawning ground throughout the spawning season. This regional difference in female behavior is attributed to higher offshore abundance of clupeid prey on the western Agulhas Bank, as determined from both diet and rates of prey consumption.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We argue that the most important climatically-driven terrestrial ecosystem changes are concentrated in annual- to decadal-scale episodic events. These rapid ecosystem responses to climate change are manifested as regionally synchronized disturbance events (eg, floods, fires, and insect outbreaks) and increased drought-caused plant mortality rates.
Resumo:
An experiment was conducted in farmers’ fields under Paikgacha thana, Khulna to study the suitability of integrated rice-cum-fish culture. Three treatments namely T1 (Puntius gonionotus), T2 (Puntius gonionotus and Cyprinus carpio) and T3 ( Cyprinus carpio) were included for the study each having three replicates. The fish were stocked at a density of 3750/ha in all the rice plots. The physicochemical parameters of water viz., water depth, temperature, dissolved oxygen, pH, salinity, nitrate and phosphate etc. recorded during the study period were found within optimum range. Of the two cultured species C. carpio attained the highest average individual weight (160g) and survival (81.06%). With respect to biomass and income, highest average fish production and net profit per hectare (306.74kg and Tk. 8177.91) were obtained in T2 and the lowest (184.17kg and Tk. 2049.41) obtained in T1 and a significant variation (p<0.05) in fish production was observed among the treatments while for rice production, it was insignificant. The cost benefit ratio of fish production found were 1:1.29, 1:2.14 and 1:1.90 for T1, T2 and T3, respectively.
Resumo:
Performance of both paddy (Var. NC 492) and prawn Penaeus monodon were assessed for two years during wet-season in rainfed lowland ecosystem with a view to study the economic viability of paddy-cum-prawn culture in the coastal saline zone of West Bengal. Both mono and dual culture of paddy and prawn were tried in the study. Fingerlings of prawn (α 35,000 haˉ¹) of 10-15 mm size were reared for about three and half months with and without fish feed. It was observed that addition of fish feed resulted in higher (57.7%) production of prawn (2.65 mg/haˉ¹) but not rice. Such increase in prawn production was 1.6 times higher when no feed was provided and 1.4 times higher when grown as sole crop. However, paddy, whether grown as mono or mixed culture, did not differ in yield significantly. In dual culture, the benefit - cost ratio was higher (6.83) when prawn was grown with feed and it was maximum (36.0) when grown without feed as sole crop. The study, therefore, indicates that paddy-cum-prawn culture under low land ecosystem of the coastal saline zone is enterprising particularly for small and marginal farmers who fear to take risk of growing prawn alone at the cost of paddy.
Resumo:
Development of collaborative approach to identify coastal water pollution issues and develop remedial strategies. Establish effective ecosystem indicator framework to measure progress toward sustaining the BOBLME ecosystem health
Resumo:
The report reviews the status of Marine Protected Areas (MPAs) and Fish Refugia in the Bay of Bengal. Baseline studies are presented and current and potential linkages between MPAs and fisheries management discussed. Feedback from a a workshop in Penang is also presented.
Resumo:
Marine fisheries catch data is presented on spatially allocated basis for the Exclusive Economic Zones of the member countries as well as the high seas for the period 1950-2008.